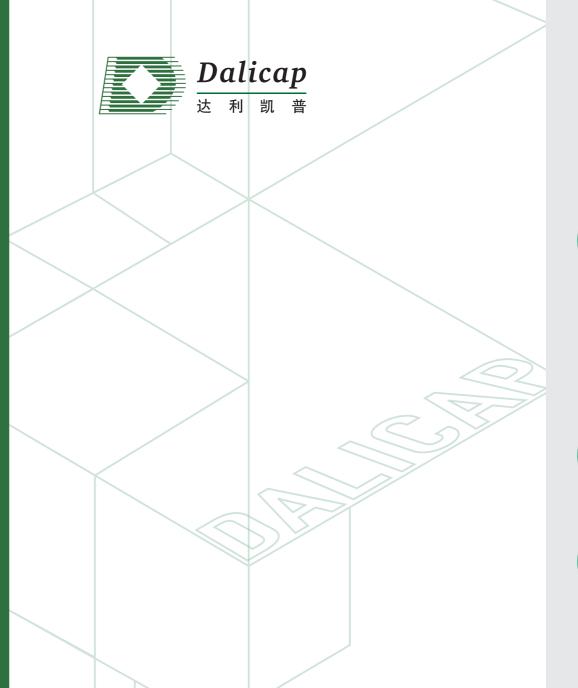
科技驱动中国・品质服务全球

Contact France: Tel: +33 (0)1 30 62 64 64 - email: contact@p2m.com - www.p2m.com




## Dalian Dalicap Technology Co., Ltd.

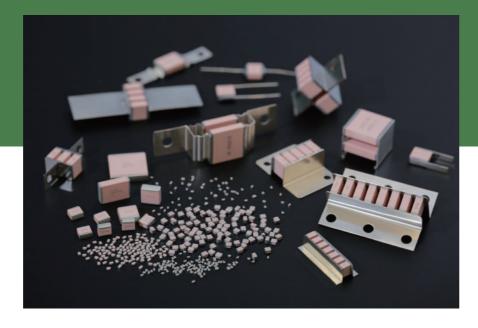
Address: No. 21 Jinyue Street, Dongjiagou Sub-district, Jinzhou District, Dalian, China.

Tel: +86 - 411- 87632359/87613673

Http://www.dalicap.com.cn
E-mail: dalicap@dalicap.com.cn

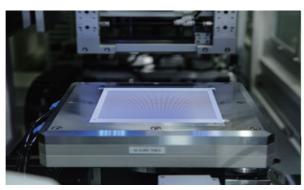


# **DALICAP PRODUCT**


- High Q, RF/Microwave Multilayer Ceramic Capacitor
- Single Layer Chip Ceramic Capacitor
- Multilayer Ceramic Capacitor
- Broadband Ceramic Capacitor
- Thin Film Circuit

## **ABOUT DALICAP**

## DALICAP TECH.


- ◆ Leading supplier of HiQ, RF/Microwave MLCC, especially in the fields of MRI, Telecom, semiconductor RF power, wireless broadcast, laser, testing and analyzing instruments, radar and aerospace etc.
- ◆ Years' experience in Telecom industry and working with clients in the time of 2G->3G->4G shift to 5G.
- ◆ With years of solid experience in the industry, including R&D, material, design, process and manufacturing
- ◆ Individual IP for new product development to insure the competence in the industry
- ◆ Standard HiQ/RF MLCC or customized(ask sales for more information)
- ◆ New production capacity to match the continuous increasing demand worldwide
- ◆ Global network technically and commercially to support clients





Dalicap attaches great importance to trusted worldwide customers, and has always been adhering to the concept of quality first and service first. As an important strategy of Dalicap, the company invested 50 Million USD and put into use a fully new high-end electronic component plant in 2021, with a total land area of 40,000 square meters and a total construction area of 56,000 square meters. It will achieve the capacity of 3 billion/Y microwave MLCC products. In addition to meeting the market demand for 5G telecommunication, it is also expected to make achievements in automotive electronics and other fields in the future.

The company will continue to adhere to the business philosophy of "focus on R&D, quality first" and do our best to create a brilliant future together with you.



## ADVANTAGES OF DALICAP

#### **R&D** and Engineering Capability

During the phase of R&D, the electromagnetic field simulation technology is introduced and the Coaxial Resonance Line is applied on the measurement of Q value of MLCC. An individual RF testing system is used to simulate the working conditions of MLCC, so as to ensure the technical performance and continuous improvement.

#### **Production Environment and Facilities**

Standard 10K-class clean room and temperature control contribute to production process and quality stability. With advanced production facilities, Dalicap ensures the consistency of the output and product quality.

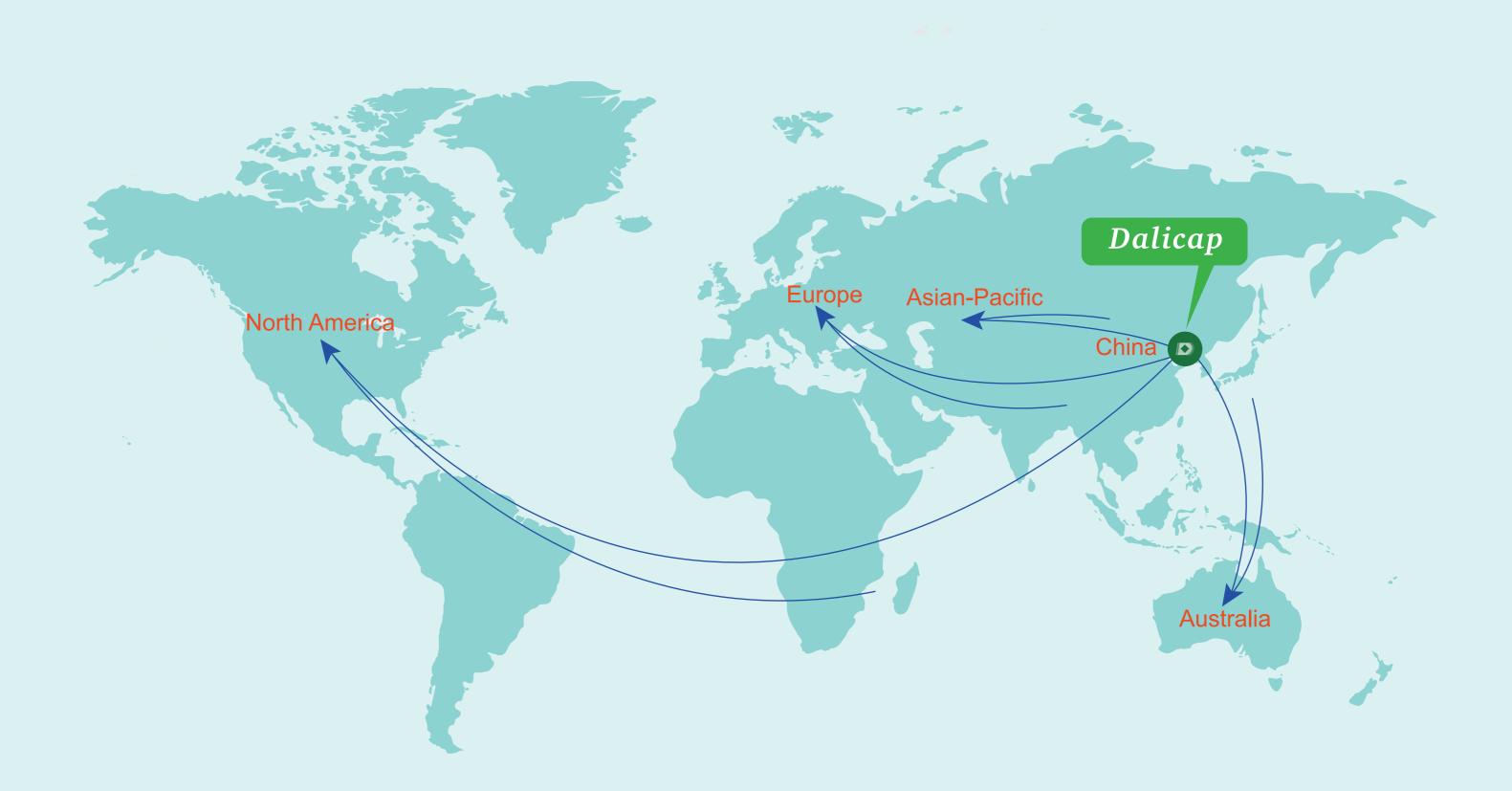
### High frequency/RF technical Support

Dalicap has S parameter test fixtures, calibrated by TRL, to measure the S parameter of capacitors, by which S2P file would be initiated and available to customers.

34A Coaxial Resonance Line system is dedicated to measuring the ESR and Q value, which is the most effective method to monitor the performance in the industry.

RF power testing system is built up for the measurement of the temperature rise under the working power, and breakdown voltage is also monitored.

With years of solid experience in the industry, Dalicap provides customized products and technical support as well.


#### **Quality Certification**

ISO 9001 & ISO 14001 are certified. RoHS is compliant.



## **CUSTOMERS OF DALICAP**

With more than 1000 overseas customers distributed widely in the North America, Europe, Asian-Pacific and Autstralia, Dalicap gains a world wide reputation.



## PRODUCT CONTENTS



## **DLC70 Series**

RF/Microwave Multilayer Chip Ceramic Capacitors 01-07

#### **Product Features**

High Q, High RF Current/Voltage, High RF Power, Low ESR/ESL, Low Noise, Ultra-Stable Performance.

SIZE: 0402, 0603, 0505, 0805, 1111, 2225, 3838



#### **DLC70 Series**

High RF Power Multilayer Chip Ceramic Capacitors 08-12

#### Product Features

High Q, High RF Current/Voltage, High RF Power, Low ESR/ESL, Low Noise, Ultra-Stable Performance.

**SIZE**: 6040, 7575, 130130



#### **Capacitor Assemblies Offering**

13-14

#### **Product Features**

High Q, High RF Current/Voltage, High RF Power, Low ESR/ESL, Low Noise, Ultra-Stable Performance, Custom-made.



#### **DLC75 Series Ultra-Low ESR, RF/Microwave Ceramic Capacitors** 15-20

#### **Product Features**

Ultra-Low ESR, High Working Voltage, High RF Power, High Self-Resonance Frequency. **SIZE**: 0201, 0402, 0603, 0805, 0708, 1111



#### **Broadband Ceramic Capacitors**

21-22

#### **Product Features**

Small Size, Lower RF Impedance in Broadband, Low Insertion Losses, Low Reflection. SIZE: 01005, 0201, 0402, 0805



#### General Purpose Non-Magnetic Multilayer Ceramic Capacitors 23-29

#### Product Features

Non-Magnetic, Suitable for MRI and other equipment requiring non-magnetic.

**SIZE**: 0603, 0805, 1206, 1210



#### **Non-Magnetic Chip Resistors**

30-34

#### **Product Applications**

MRI medical equipment, Measurement instrument, other non-magnetic applications.

**SIZE**: 0603, 0805, 1206



#### **Single Layer Chip Ceramic Capacitor**

35-47

#### Product Applications

Suitable for RF/Microwave phased array radar T/R assembly, and filter, DC blocking and bypass at microwave frequencies.



#### Thin Film Circuit

**Product Applications** 

48-50

Substrates for microwave/millimeter wave application, microwave/millimeter wave device, and high-speed optical communication device.



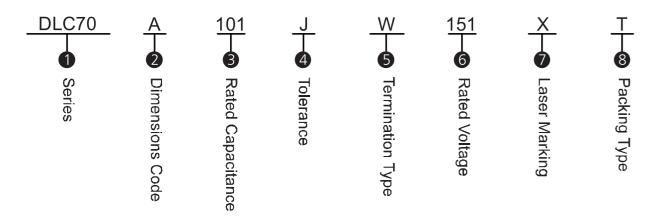











#### ◆ Product Features

High Q, High RF Current/Voltage, High RF Power, Low ESR/ESL, Low Noise, Ultra-Stable Performance. Lead capacitors' surface are coated with special coating, which can prevent arc and corona from occurring at high RF voltages.

#### ◆ Product Applications

Typical Circuit Applications: High Frequency/Microwave/ RF Amplifiers, Low Noise Amplifiers, L/C Filters. Typical Applications Field: Mobile Base Stations, Repeaters, Wireless Broadcasting Equipments, Radio Stations, Radar, MRI Equipments, HSR Signal Transponders.

#### **♦** Part Numbering



① Series: Dalicap 70 Series High Q High Power Capacitor, Temperature Coefficient: 0 ± 30ppm/°C.

#### 2 Dimensions Code

unit:inch(millimeter)

|           | DLC70H                                 | DLC70P                                 | DLC70A                                 | DLC70D                                |
|-----------|----------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------|
| Length    | .039 ± .005<br>(1.00 ± 0.12)           | .063 ±.006<br>(1.60 ±0.15)             | .055(+.015~—.010)<br>(1.40+0.38~—0.25) | $.079 \pm .008$<br>(2.00 $\pm 0.20$ ) |
| Width     | $.020 \pm .004 (0.50 \pm 0.10)$        | $.031 \pm .006 (0.80 \pm 0.15)$        | $.055 \pm .010(1.40 \pm 0.25)$         | $.049 \pm .008 (1.25 \pm 0.20)$       |
| Thickness | $.020 \pm .004 (0.50 \pm 0.10)$        | .031±.006<br>(0.80±0.15)               | .057(1.45)max                          | .057(1.45)max                         |
|           | DLC70B                                 | DLC70C                                 | DLC70E                                 |                                       |
| Length    | .110(+.025~—.010)<br>(2.79+0.63~—0.25) | .225(+.020~—.010)<br>(5.72+0.51~—0.25) | .380(+.015~—.010)<br>(9.65+0.38~—0.25) | _                                     |
| Width     | $.110 \pm .010 (2.79 \pm 0.25)$        | $.250 \pm .015 (6.35 \pm 0.38)$        | .380 ± .010(9.65 ± 0.25)               | _                                     |
| Thickness | .100(2.54)max                          | .150(3.81)max                          | .170(4.32)max                          | _                                     |



## **DLC70 Series RF/Microwave Multilayer Chip Ceramic Capacitors**

## 3 Rated Capacitance

Capacitance is less than 10pF; for example: 1R0=1.0pF, R denotes decimal point. Capacitance greater than 10pF; for example: 101=100pF, the third number is the power of 10.

#### **4** Tolerance

| Code      | А       | В      | С       | D      | F   | G   | J   |
|-----------|---------|--------|---------|--------|-----|-----|-----|
| Tolerance | ±0.05pF | ±0.1pF | ±0.25pF | ±0.5pF | ±1% | ±2% | ±5% |

#### ⑤ Termination Type

| Code | W                   | Р                          | L                         |
|------|---------------------|----------------------------|---------------------------|
| Туре | 100% Sn Solder over | 100% Sn Solder over Copper | 90% Sn 10% Pb Solder over |
|      | Nickel Plating      | Plating (RoHS Compliant)   | Nickel Plating (Tin/Lead) |

| Code | MS                    | AR                      | RR                       | AW                    | RW                     |
|------|-----------------------|-------------------------|--------------------------|-----------------------|------------------------|
| Туре | Microstrip            | Axial Ribbon            | Radial Ribbon            | Axial Wire            | Radial Wire            |
|      |                       |                         |                          |                       |                        |
| Code | MN AN                 |                         | FN                       | BN                    | RN                     |
| Туре | Non-mag<br>Microstrip | Non-mag<br>Axial Ribbon | Non-mag<br>Radial Ribbon | Non-mag<br>Axial Wire | Non-mag<br>Radial Wire |

#### Rated Voltage

| Code | Rated Voltage(V) | Code | Rated Voltage(V) | Code | Rated Voltage(V) |
|------|------------------|------|------------------|------|------------------|
| 500  | 50               | 301  | 300              | 252  | 2500             |
| 101  | 100              | 501  | 500              | 302  | 3000             |
| 151  | 150              | 601  | 600              | 362  | 3600             |
| 201  | 200              | 102  | 1000             | 722  | 7200             |
| 251  | 250              | 152  | 1500             |      |                  |

#### ① Laser Marking

X denotes Marking. Capacitance is less than 10pF; for example: the marking of 1.0pF is 1R0. Capacitance greater than 10pF; for example: the marking of 100pF is 101.

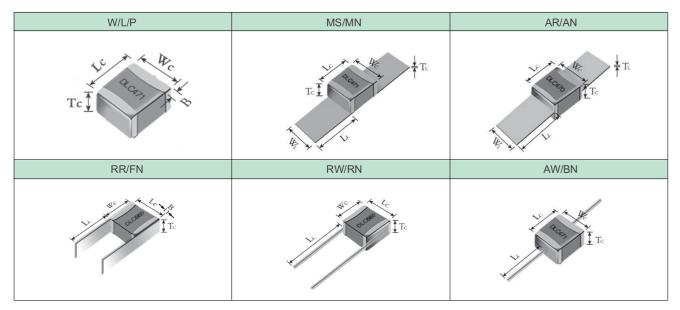
#### Packaging Type

|                      | 70H          | 70P | 70D      | 70A          | 70B | 70C | 70E       |
|----------------------|--------------|-----|----------|--------------|-----|-----|-----------|
| T: Horizontal Taping | $\checkmark$ | V   | $\vee$   | $\checkmark$ | V   |     | $\sqrt{}$ |
| TV: Vertical Taping  |              | V   | <b>√</b> | <b>√</b>     | V   | V   |           |
| B: Plastic Bag       |              |     |          | $\checkmark$ | V   |     |           |
| C: Waffle Box        |              |     |          |              |     | V   | V         |

#### **♦** Performance Requirements

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

## **D**alicap


## **♦**Capacitance & Rated Voltage Table

| Capaci     | Rated      |      |               |      |               |      |               |      | Size(i        | inch) |               |      |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|------------|------------|------|---------------|------|---------------|------|---------------|------|---------------|-------|---------------|------|---------------|------|---------------|------|---------------|--|--|--|--|--|--|--|--------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
|            | WVDC       | וח   | .C70H         | DI   | .C70P         | וח   | C70A          | DI   | _C70D         |       | .C70R         | וח   | .C70B         | DI   | .C70C         | DI   | .C70E         |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cap.pF     |            | (0   | )402)         | (0   | 1603)         | (0   | 0505)         | ((   | 0805)         | (0    | 710)          | (*   | 1111)         | (2   | 2225)         | (3   | 8838)         |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cap.pF     | Code       | Tol. | Rated<br>WVDC | Tol. | Rated<br>WVDC | Tol. | Rated<br>WVDC | Tol. | Rated<br>WVDC | Tol.  | Rated<br>WVDC | Tol. | Rated<br>WVDC | Tol. | Rated<br>WVDC | Tol. | Rated<br>WVDC |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0.1        | OR1        |      |               |      |               |      |               |      |               |       |               |      |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0.2        | OR2        |      |               |      |               |      |               |      |               |       |               |      |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0.3        | OR3        |      |               |      |               |      |               |      |               |       |               |      |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0.4        | OR4<br>OR5 | -    |               |      |               |      |               |      |               |       |               |      |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0.6        | OR6        |      |               |      |               |      |               |      |               |       |               |      |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0.7        | OR7        |      |               |      |               |      |               |      |               |       |               |      |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0.8        | OR8        |      |               |      |               |      |               |      |               |       |               |      |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0.9        | OR9        |      |               |      |               |      |               |      |               |       |               |      |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0        | 1R0        |      |               |      |               |      |               |      |               |       |               |      |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.1        | 1R1        |      |               |      |               |      |               |      |               |       |               |      |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.2        | 1R2<br>1R3 |      |               |      |               |      |               |      |               |       |               |      |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.3        | 1R3        |      |               |      |               |      |               |      |               |       |               |      |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.4        | 1R4<br>1R5 | Α,   |               | Α,   |               | Α,   |               | Α,   |               | В,    |               |      |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.6        | 1R6        | В,   |               | В,   |               | В,   |               | В,   |               | C,    |               |      |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.7        | 1R7        | С,   |               | С,   |               | Ċ,   |               | C,   |               | D.    |               |      |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.8        | 1R8        | D.   |               | D.   |               | D.   |               | D.   |               |       |               | Α,   |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.9        | 1R9        |      |               |      |               |      |               |      |               |       |               | В,   |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2.0        | 2R0        |      |               |      |               |      |               |      |               |       |               | C,   |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2.1        | 2R1        |      | 200V          |      |               |      |               |      |               |       |               | D.   |               | В,   |               | В,   |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2.2        | 2R2        |      | Code          |      |               |      |               |      |               |       |               |      |               | С,   |               | С,   |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2.4        | 2R4        |      | 201           |      |               |      |               |      |               |       |               |      |               | D.   |               | D.   |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2.7<br>3.0 | 2R7<br>3R0 |      | 201           |      |               |      | 150V          |      |               |       |               |      | F00\/         | υ.   | 2500V         | υ.   | 3600V         |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3.0        | 3R0<br>3R3 |      |               |      |               |      | Code          |      |               |       |               |      | 500V          |      | Code          |      | Code          |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3.6        | 3R6        |      |               |      | 250V          |      | 151           |      | 250V          |       | 500V          |      | Code          |      | 252           |      | 362           |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3.9        | 3R9        |      |               |      | Code          |      | or            |      | Code          |       | Code          |      | 501           |      | or            |      | or            |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4.3        | 4R3        |      |               |      | 251           |      | 300V          |      | 251           |       | 501           |      | or            |      | 3600V         |      | 7200V         |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4.7        | 4R7        |      |               |      | 231           |      | Code          |      | 231           |       | 301           |      | 1500V         |      | Code          |      | Code          |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 5.1        | 5R1        |      |               |      |               |      | 301           |      |               |       |               |      | Code          |      | 362           |      | 722           |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 5.6        | 5R6        |      |               |      |               |      |               |      |               |       |               |      | 152           |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 6.2        | 6R2        |      |               |      |               |      |               |      |               |       |               |      |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 6.8<br>7.5 | 6R8<br>7R5 |      |               |      |               |      |               |      |               |       |               |      |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8.2        | 8R2        |      |               |      |               |      |               |      |               |       |               |      |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 9.1        | 9R1        |      |               |      |               |      |               |      |               |       |               |      |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10         | 100        |      |               |      |               |      |               |      |               |       |               |      |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 11         | 110        |      |               |      |               |      |               |      |               |       |               |      |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 12         | 120        |      |               |      |               |      |               |      |               |       |               |      |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 13         | 130        |      |               |      |               |      |               |      |               |       |               |      |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 15         | 150        |      |               |      |               |      |               |      |               |       |               |      |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 16         | 160<br>180 | F,   |               | F,   |               | F,   |               | F,   |               | G,    |               | F,   |               | F,   |               | F,   |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 18<br>20   | 200        | G,   |               | G,   |               | G,   |               | G,   |               | J.    |               | G,   |               | G,   |               | G,   |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 22         | 220        | J.   |               | J.   |               | J.   |               | J.   |               |       |               | J.   |               | J.   |               | J.   |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 24         | 240        |      |               |      |               |      |               |      |               |       |               |      |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 27         | 270        |      |               |      |               |      |               |      |               |       |               |      |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 30         | 300        |      |               |      |               |      |               |      |               |       |               |      |               |      |               |      |               |  |  |  |  |  |  |  | 50V<br>Code<br>500 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 33         | 330        |      | 500           |      |               |      |               |      |               |       |               |      |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 36         | 360        |      |               |      |               |      |               |      |               |       |               |      |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 39         | 390        |      |               |      |               |      |               |      |               |       |               |      |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 43         | 430        |      |               |      |               |      |               |      |               |       |               |      |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 47         | 470        |      |               |      |               |      |               |      |               |       |               |      |               |      |               |      |               |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## **♦**Capacitance & Rated Voltage Table

|              | Rated      |      |               |      |               |      |               |      | Size(         | inch) |               |      |                    |      |                |      |                |
|--------------|------------|------|---------------|------|---------------|------|---------------|------|---------------|-------|---------------|------|--------------------|------|----------------|------|----------------|
|              | WVDC       | DI   | _C70H         | DI   | C70D          | DI   | .C70A         | DI   | .C70D         |       | .C70R         | DI   | C70D               | DI   | C70C           | DI   | C70F           |
| Cap.pF       |            |      | 0402)         |      | C70P<br>0603) |      | )505)         |      | 0805)         |       | )710)         |      | _C70B<br>1111)     |      | .C70C<br>2225) | (3   | .C70E<br>8838) |
| Cap.pF       | Code       | Tol. | Rated<br>WVDC | Tol. | Rated<br>WVDC | Tol. | Rated<br>WVDC | Tol. | Rated<br>WVDC | Tol.  | Rated<br>WVDC | Tol. | Rated<br>WVDC      | Tol. | Rated<br>WVDC  | Tol. | Rated<br>WVDC  |
| 51           | 510        |      |               | F,   | 250V          |      |               |      |               |       |               |      | 500V               |      | 2500V          |      |                |
| 56           | 560        |      |               | G,   | Code          |      |               |      |               |       |               |      | Code               |      | Code           |      |                |
| 62           | 620        |      |               | J.   | 251           |      |               |      |               | G,    | 500V          |      | 501                |      | 252            |      |                |
| 68<br>75     | 680<br>750 |      |               |      |               |      |               | _    | 2501/         | J.    | Code          |      | or                 |      | or             |      | 3600V          |
| 82           | 820        | 1    |               |      |               |      | 450)/         | F,   | 250V          | J.    | 501           |      | 1500V              |      | 3600V          |      | Code<br>362    |
| 91           | 910        | 1    |               |      |               |      | 150V          | G,   | Code          |       |               |      | Code<br>152        |      | Code<br>362    |      | or             |
| 100          | 101        | İ    |               |      |               |      | Code          | J.   | 251           |       |               |      | 132                |      | 302            |      | 7200V          |
| 110          | 111        |      |               |      |               |      | 151           |      |               |       |               |      | 300V               |      |                |      | Code           |
| 120          | 121        |      |               |      |               |      | or            |      |               |       |               |      | Code               |      | 2500V          |      | 722            |
| 130          | 131        |      |               |      |               |      | 200V          |      |               |       |               |      | 301                |      | Code           |      |                |
| 150          | 151        |      |               |      |               |      | Code          |      |               |       |               |      | or<br>1000V        |      | 252            |      |                |
| 160          | 161        | -    |               |      |               |      | 201           |      |               |       |               |      | Code               |      | or<br>3000V    |      |                |
| 180<br>200   | 181<br>201 | 1    |               |      |               | F,   |               |      |               |       |               | F,   | 102                | F,   | Code           | F,   |                |
| 220          | 221        | ł    |               |      |               | G,   |               |      |               |       |               | G,   |                    | G,   | 302            | G,   |                |
| 240          | 241        | 1    |               |      |               | J.   |               |      |               |       |               | J.   | 200V               | J.   |                | J.   | 3600V          |
| 270          | 271        | 1    |               |      |               |      |               |      |               |       |               |      | Code               |      |                |      | Code           |
| 300          | 301        |      |               |      |               |      |               |      |               |       |               |      | 201                |      |                |      | 362            |
| 330          | 331        | 1    |               |      |               |      |               |      |               |       |               |      | or<br>600V         |      | 1500V<br>Code  |      |                |
| 360          | 361        | -    |               |      |               |      |               |      |               |       |               |      | Code               |      | 152            |      |                |
| 390<br>430   | 391<br>431 | -    |               |      |               |      | 150V          |      |               |       |               |      | 601                |      | or<br>2000V    |      |                |
| 470          | 471        | 1    |               |      |               |      | Code          |      |               |       |               |      |                    |      | Code<br>202    |      |                |
| 510          | 511        | 1    |               |      |               |      | 151           |      |               |       |               |      |                    |      | 202            |      | 2500V          |
| 560          | 561        | 1    |               |      |               |      |               |      |               |       |               |      | 100V               |      | 1000V          |      | Code           |
| 620          | 621        |      |               |      |               |      |               |      |               |       |               |      | Code<br>101        |      | Code           |      | 252            |
| 680          | 681        |      |               |      |               |      | 50V<br>Code   |      |               |       |               |      | or                 |      | 102            |      |                |
| 750          | 751        | -    |               |      |               |      | 500           |      |               |       |               |      | 300V               |      | or             |      |                |
| 910          | 821<br>911 | 1    |               |      |               |      | or<br>100V    |      |               |       |               |      | Code               |      | 1500V          |      |                |
| 1000         | 102        | 1    |               |      |               |      | Code<br>101   |      |               |       |               |      | 301                |      | Code           |      |                |
| 1100         | 112        |      |               |      |               |      |               |      |               |       |               |      | 2001/              |      | 152            |      | 1000V          |
| 1200         | 122        |      |               |      |               |      |               |      |               |       |               |      | 200V<br>Code       |      |                |      | Code           |
| 1500         | 152        |      |               |      |               |      |               |      |               |       |               |      | 201                |      | ·              |      | 102            |
| 1800         | 182        | 1    |               |      |               |      |               |      |               |       |               |      |                    |      | 500V           |      |                |
| 2200         | 222        | 1    |               |      |               |      |               |      |               |       |               |      |                    |      | Code           |      |                |
| 2400<br>2700 | 242<br>272 |      |               |      |               |      |               |      |               |       |               |      |                    |      | 501            |      |                |
| 3000         | 302        | 1    |               |      |               |      |               |      |               |       |               | G,   |                    |      |                |      |                |
| 3300         | 332        | 1    |               |      |               |      |               |      |               |       |               | J.   | 100V               |      |                |      | 500V           |
| 3600         | 362        |      |               |      |               |      |               |      |               |       |               |      | Code<br>101        |      |                |      | Code           |
| 3900         | 392        |      |               |      |               |      |               |      |               |       |               |      | 101                |      |                |      | 501            |
| 4300         | 432        | 1    |               |      |               |      |               |      |               |       |               |      |                    |      |                |      | 301            |
| 4700<br>5100 | 472        | -    |               |      |               |      |               |      |               |       |               |      |                    |      |                |      |                |
| 5100<br>5600 | 512<br>562 | 1    |               |      |               |      |               |      |               |       |               |      | 50V                |      |                |      |                |
| 10000        | 103        | 1    |               |      |               |      |               |      |               |       |               |      | 50V<br>Code<br>500 |      |                |      |                |
|              |            |      |               |      |               |      |               |      |               |       |               |      |                    |      |                |      |                |
|              |            |      |               |      |               |      |               |      |               |       |               |      |                    |      |                |      |                |
|              |            | -    |               |      |               |      |               |      |               |       |               |      |                    |      |                |      |                |
|              |            | -    |               |      |               |      |               |      |               |       |               |      |                    |      |                |      |                |
|              |            | 1    |               |      |               |      |               |      |               |       |               |      |                    |      |                |      |                |
|              |            |      | 1             | 1    | I             | 1    | 1             | 1    | 1             | 1     | 1             | 1    | 1                  | 1    | 1              | 1    | 1              |

## **♦** DLC70 Lead Type and Dimensions



unit: inch(millimeter)

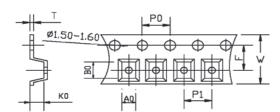
|        | Term.          |                              | Capacitor Dir                | nensions          |                          |                        | Lead Dimension                   | ons                           |                             |
|--------|----------------|------------------------------|------------------------------|-------------------|--------------------------|------------------------|----------------------------------|-------------------------------|-----------------------------|
| Series | Code           | Length<br>(Lc)               | Width<br>(Wc)                | Thick.<br>(Tc)    | Overlap<br>(B)           | Length (LL)            | Width<br>(WL)                    | Thickness<br>(TL)             | Plated<br>Material          |
| DLC70B | MS/MN          | .135 ± .015<br>(3.43 ± 0.38) | .110 ± .010<br>(2.79 ± 0.25) | .100<br>(2.54)max | .016~.039<br>(0.40~1.00) | .250<br>(6.35)min      | .093 ± .005<br>(2.36 ± 0.13)     | .004 ± .001<br>(0.10 ± .025)  | 100% Ag                     |
|        | MS/MN<br>AR/AN |                              |                              |                   |                          | .500<br>(12.70)<br>min | .240 ± .005<br>(6.10 ± 0.13)     | .008 ± .001<br>(0.20 ± 0.025) | Silver-<br>plated<br>Copper |
| DLC70C | RR/FN          | .245 ± .025                  | .250 ± .015                  | .165              | .020~.047                | .354<br>(9.00)<br>min  | .118 ± .005<br>(3.00 ± 0.13)     | .012 ± .001<br>(0.30 ± 0.025) |                             |
| BEOTOG | RW/RN          | $(6.22 \pm 0.64)$            | $(6.35 \pm 0.38)$            | (4.19) max        | (0.50~1.20)              | .709<br>(18.00)<br>min | Dia.=.03                         | 31±.004                       | Silver-<br>plated<br>Copper |
|        | AW/BN          |                              |                              |                   |                          | .906<br>(23.00)<br>min | 3.0)                             | 35653.                        |                             |
|        | MS/MN          |                              |                              |                   |                          | .728<br>(18.50)        | $.350 \pm .020$<br>(8.89 ± 0.50) | .008 ± .001                   | Silver-<br>plated           |
|        | AR/AN          |                              |                              |                   |                          | min                    | .315 ± .010<br>(8.00 ± 0.25)     | (0.20 ± .025)                 | Copper                      |
| DLC70E | RR/FN          | .380<br>+.015~010<br>(9.65   | .380 ± .010<br>(9.65 ± 0.25) | .177<br>(4.50)max | .024~.059                | .354<br>(9.00)<br>min  | .118 ± .005<br>(3.00 ± 0.13)     | .012 ± .001<br>(0.30 ± 0.025) |                             |
|        | RW/RN          | +0.38~-0.25)                 | (2.33 2 3.23)                | ( 5 ,a/           |                          | .709<br>(18.00)<br>min | Dia.=.03                         | 31±.004                       | Silver-<br>plated<br>Copper |
|        | AW/BN          |                              |                              |                   |                          | .906<br>(23.00)<br>min | 3.0)                             |                               |                             |



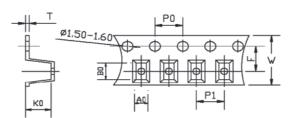
## **♦**Performance

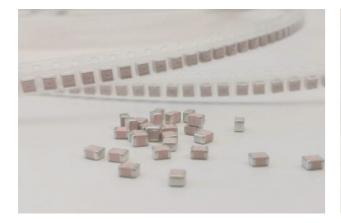
| Item                                  | Specifications                                                                                                                                                                                    |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quality Factor (Q)                    | Greater than 10,000, C≤1000pF, at 1±0.1 MHz.<br>Greater than10,000, C>1000pF, at 1±0.1 KHz.                                                                                                       |
| Insulation Resistance (IR)            | Test Voltage: Applied Rated Voltage, and 500V maximum.<br>$10^5$ Megohms min. @ $+25$ $^{\circ}$ C.<br>$10^4$ Megohms min. @ $+125$ $^{\circ}$ C.                                                 |
| Rated Voltage                         | See Rated Voltage Table                                                                                                                                                                           |
| Dielectric Withstanding Voltage (DWV) | 250% of Rated Voltage for 5 seconds, Rated Voltage ≤500VDC<br>150% of Rated Voltage for 5 seconds, 500VDC < Rated Voltage ≤1250VDC<br>120% of Rated Voltage for 5 seconds, Rated Voltage >1250VDC |
| Operating Temperature Range           | -55 $^{\circ}$ C ~ +125 $^{\circ}$ C(70B 0.1pF ~ 1000pF can reach to -55 $^{\circ}$ C ~ +175 $^{\circ}$ C)<br>Notes: For higher temperature, please contact with Dalicap.                         |
| Temperature Coefficient (TC)          | $0\pm30~{\rm ppm/^{\circ}C};~(-55~{\rm ^{\circ}C}\sim+175~{\rm ^{\circ}C},0\pm60~{\rm ppm/^{\circ}C})$                                                                                            |
| Capacitance Drift                     | $\pm$ 0.2% or $\pm$ 0.05pF, whichever is greater.                                                                                                                                                 |
| Piezoelectric Effects                 | None                                                                                                                                                                                              |
| Termination Type                      | See Termination Type Table                                                                                                                                                                        |

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.


## **♦**Environmental Tests

| Item                       | Specifications                                                                                                             | Method                                                                                                                                                                                                                                                 |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Thermal<br>Shock           | DWV: the initial value IR: Shall not be less than 30% of the initial value Capacitance change: no more than 0.5% or 0.5pF. | MIL-STD-202, Method 107, Condition A. At the maximum rated temperature stay 15 minutes. The time of removing shall not be more than 5 minutes. Perform the five cycles.                                                                                |
| Moisture<br>Resistance     | whichever is greater.                                                                                                      | MIL-STD-202, Method 106.                                                                                                                                                                                                                               |
| Humidity<br>(steady state) | DWV: the initial value IR: the initial value Capacitance change: no more than 0.3% or 0.3pF. whichever is greater.         | MIL-STD-202, Method 103, Condition A, with 1.5 Volts D.C. applied while subjected to an environment of 85 °C with 85% relative humidity for 240 hours minimum.                                                                                         |
| Life                       | IR: Shall not be less than 30% of the initial value Capacitance change: no more than 2.0% or 0.5pF. whichever is greater.  | MIL-STD-202, Method 108, for 2000 hours, at 125 °C.  200% of Rated Voltage for Capacitors, Rated Voltage ≤500VDC  120% of Rated Voltage for Capacitors, 500VDC < Rated Voltage ≤1250VDC  100% of Rated Voltage for Capacitors, Rated Voltage > 1250VDC |


## **◆**Tape & Reel Specifications


|        | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | W<br>(mm) | P0<br>(mm) | P1<br>(mm) | T<br>(mm) | F<br>(mm) | Qty/min | Qty/reel | Tape<br>Material |
|--------|------------|------------|------------|-----------|------------|------------|-----------|-----------|---------|----------|------------------|
| 0505-H | 1.50       | 1.75       | 1.15       | 8.00      | 4.00       | 4.00       | 0.22      | 3.50      | 500     | 3000     | Plastic          |
| 0505-H | 1.40       | 1.80       | 0.95       | 8.00      | 4.00       | 4.00       | 0.25      | 3.50      | 500     | 3000     | Plastic          |
| 0505-H | 1.50       | 1.75       | 1.30       | 8.00      | 4.00       | 4.00       | 0.22      | 3.50      | 500     | 3000     | Plastic          |
| 0505-V | 1.10       | 1.60       | 1.40       | 8.00      | 4.00       | 4.00       | 0.30      | 3.50      | 500     | 1000     | Plastic          |
| 1111-H | 2.85       | 3.50       | 1.95       | 8.00      | 4.00       | 4.00       | 0.25      | 3.50      | 500     | 2000     | Plastic          |
| 1111-H | 2.85       | 3.60       | 2.40       | 8.00      | 4.00       | 4.00       | 0.25      | 3.50      | 500     | 2000     | Plastic          |
| 1111-V | 2.30       | 3.55       | 2.70       | 12.00     | 4.00       | 4.00       | 0.40      | 5.50      | 500     | 1500     | Plastic          |
| 2225-H | 6.70       | 6.20       | 3.40       | 16.00     | 4.00       | 12.00      | 0.30      | 7.50      | 100     | 500      | Plastic          |
| 2225-V | 4.10       | 6.15       | 6.55       | 16.00     | 4.00       | 8.00       | 0.40      | 7.50      | 100     | 300      | Plastic          |
| 3838-H | 10.10      | 10.10      | 3.30       | 16.00     | 4.00       | 16.00      | 0.30      | 7.50      | 50      | 300      | Plastic          |
| 3838-H | 10.10      | 10.10      | 4.30       | 16.00     | 4.00       | 16.00      | 0.40      | 7.50      | 50      | 200      | Plastic          |

#### **Horizontal Orientation**



#### Vertical Orientation

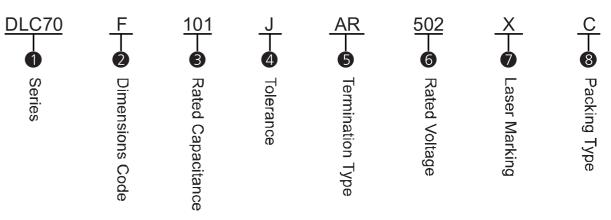








## DLC70 Series High RF Power Multilayer Chip Ceramic Capacitors


#### **♦**Product Features

High Q, High RF Current/Voltage, High RF Power, Low ESR/ESL, Low Noise, Ultra-Stable Performance.

#### **♦**Product Applications

High RF Power Amplifiers, High Power Filter Networks, Wireless Demodulation.

#### ◆Part Numbering



① **Series:** Dalicap 70 Series High RF Power Capacitor, Temperature Coefficient:  $0 \pm 30$ ppm/ $^{\circ}$ C.

#### ② Dimensions Code

unit:inch(millimeter)

|           | DLC70F                                  | DLC70G                                  | DLC70L                     |
|-----------|-----------------------------------------|-----------------------------------------|----------------------------|
| Length    | .614(+.015~—.010)<br>(15.60+0.38~—0.25) | .760(+.015~—.010)<br>(19.30+0.38~—0.25) | 1.350±.050<br>(34.29±1.27) |
| Width     | .433 ±.010(11.0 ±0.25)                  | $.760 \pm .010 (19.30 \pm 0.25)$        | 1.350 ±.050(34.29±1.27)    |
| Thickness | .197(5.00)max                           | .197(5.00)max                           | .197(5.00)max              |

#### ③ Rated Capacitance

Capacitance is less than 10pF; for example: 1R0=1.0pF, R denotes decimal point.

Capacitance is not less than 10pF; for example: 101=100pF, the third number is the power of 10.

#### 4 Tolerance

| Code      | В      | С       | D      | F   | G   | J   |
|-----------|--------|---------|--------|-----|-----|-----|
| Tolerance | ±0.1pF | ±0.25pF | ±0.5pF | ±1% | ±2% | ±5% |

#### ⑤ Termination Type

| Code | W                   | Р                          | L                         |  |
|------|---------------------|----------------------------|---------------------------|--|
| Туре | 100% Sn Solder over | 100% Sn Solder over Copper | 90% Sn 10% Pb Solder over |  |
|      | Nickel Plating      | Plating (RoHS Compliant)   | Nickel Plating (Tin/Lead) |  |

07



## ⑤ Termination Type

| Code | MS         | AR           | AW         | RW          |  |
|------|------------|--------------|------------|-------------|--|
| Туре | Microstrip | Axial Ribbon | Axial Wire | Radial Wire |  |

| Code | MN                    | AN                      | BN                    | RN                     |  |
|------|-----------------------|-------------------------|-----------------------|------------------------|--|
| Туре | Non-mag<br>Microstrip | Non-mag<br>Axial Ribbon | Non-mag<br>Axial Wire | Non-mag<br>Radial Wire |  |

## 

| Code | Rated Voltage(V) | Code | Rated Voltage(V) |
|------|------------------|------|------------------|
| 301  | 300              | 302  | 3000             |
| 501  | 500              | 362  | 3600             |
| 102  | 1000             | 502  | 5000             |
| 152  | 1500             | 802  | 8000             |
| 202  | 2000             | 103  | 10000            |
| 252  | 2500             |      |                  |

## ① Laser Marking

X denotes Marking. Capacitance is less than 10pF; for example: the marking of 1.0pF is 1R0. Capacitance is not less than 10pF; for example: the marking of 100pF is 101.

## Packaging Type

|                          | 70F                  | 70G          | 70L          |  |
|--------------------------|----------------------|--------------|--------------|--|
| C: Waffle Tray packaging | $\sqrt{}$            | $\checkmark$ | $\checkmark$ |  |
| I: Special packaging     | Consult with DALICAP |              |              |  |

## **♦** Performance Requirements

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.







## **♦**Capacitance & Rated Voltage Table

|        | Rated<br>WVDC |          |                  | Size(inch)       |               |                    |               |  |
|--------|---------------|----------|------------------|------------------|---------------|--------------------|---------------|--|
| Cap.   | WVDC          |          | LC70F<br>(6040)  | DLC70G<br>(7575) |               | DLC70L<br>(130130) |               |  |
| Cap.pF | Code          | Tol.     | Rated<br>WVDC    | Tol.             | Rated<br>WVDC | Tol.               | Rated<br>WVDC |  |
| 1.0    | 1R0           |          |                  |                  |               |                    |               |  |
| 1.2    | 1R2           |          |                  |                  |               |                    |               |  |
| 1.5    | 1R5           |          |                  |                  |               |                    |               |  |
| 1.6    | 1R6           |          |                  |                  |               |                    |               |  |
| 1.8    | 1R8           |          |                  |                  |               |                    |               |  |
| 2.2    | 2R2           |          |                  |                  |               |                    |               |  |
| 2.7    | 2R7           |          |                  |                  |               |                    |               |  |
| 3.3    | 3R3           |          |                  |                  |               |                    |               |  |
| 3.6    | 3R6           | В,       |                  |                  |               |                    |               |  |
| 3.9    | 3R9           | C,       |                  | В,               |               |                    |               |  |
| 4.7    | 4R7           | D.       |                  | C,               |               |                    |               |  |
| 5.6    | 5R6           |          |                  | D.               |               |                    |               |  |
| 6.8    | 6R8           |          | 5000V            | ٥.               |               |                    |               |  |
| 8.2    | 8R2           |          | Code502          |                  |               |                    |               |  |
| 10     | 100           |          |                  |                  |               |                    |               |  |
| 12     | 120           |          | Extended         |                  | 5000V         |                    |               |  |
| 15     | 150           |          | Vo <b>l</b> tage |                  | Code502       |                    |               |  |
| 18     | 180           |          | 8000V            |                  | Extended      |                    |               |  |
| 22     | 220           |          | Code802          |                  | Voltage       |                    |               |  |
| 27     | 270           |          |                  |                  | 8000V         |                    |               |  |
| 33     | 330           |          |                  |                  | Code802       |                    |               |  |
| 39     | 390           |          |                  |                  | 0000002       |                    |               |  |
| 47     | 470           |          |                  |                  |               |                    |               |  |
| 56     | 560           |          |                  |                  |               |                    |               |  |
| 68     | 680           |          |                  | F,               |               |                    |               |  |
| 82     | 820           |          |                  | G,               |               |                    |               |  |
| 100    | 101           |          |                  | J.               |               |                    |               |  |
| 120    | 121           | F,       |                  | 7.               |               |                    |               |  |
| 150    | 151           | .,<br>G, |                  |                  |               |                    |               |  |
| 180    | 181           | J.       | 3000V            |                  |               |                    |               |  |
| 200    | 201           | J.       | Code302          |                  |               |                    |               |  |
| 220    | 221           |          | Extended         |                  |               |                    |               |  |
| 270    | 271           |          | Voltage          |                  |               |                    |               |  |
| 300    | 301           |          | 5000V            |                  |               |                    |               |  |
| 330    | 331           |          | Code502          |                  |               |                    |               |  |
| 390    | 391           |          | Code302          |                  | 3000V         |                    | 10KV          |  |
| 470    | 471           |          |                  |                  | Code302       | G,                 | Code          |  |
| 560    | 561           |          |                  |                  | Extended      | J.                 |               |  |
| 680    | 681           |          |                  |                  | Voltage       |                    | 103           |  |
| 820    | 821           |          | 2000V            |                  | 5000V         |                    |               |  |
| 1000   | 102           |          | Code202          |                  | Code502       |                    |               |  |
| 1200   | 122           |          | Extended         |                  | Codesoz       |                    |               |  |
| 1500   | 152           |          | Voltage          |                  |               |                    |               |  |
| 1800   | 182           |          | 3000V<br>Code302 |                  |               |                    |               |  |
| 2200   | 222           |          | Codesuz          |                  |               |                    |               |  |

|                 | Rated<br>WVDC |      |                  | Size | e(inch)             |         |                 |
|-----------------|---------------|------|------------------|------|---------------------|---------|-----------------|
| Cap.            | WIDC          |      | DLC70F<br>(6040) |      | LC70G<br>(7575)     | D<br>(1 | LC70L<br>30130) |
| Cap.pF          | Code          | Tol. | Rated<br>WVDC    | Tol. | Rated<br>WVDC       | Tol.    | Rated<br>WVDC   |
| 2700            | 272           |      | 1000V            |      | 3000V<br>Code302    |         |                 |
| 3300            | 332           | F,   | Code102          |      | Extended            |         |                 |
| 4700            | 472           | G,   | Extended         |      | Voltage<br>5000V    |         |                 |
| 5100            | 512           | J.   | Voltage          |      | Code502             | G,      | 5KV             |
| 5600            | 562           | , ,, | 2000V            | G,   | 1000V               | J.      | Code            |
| 6800            | 682           |      | Code202          |      | Code102<br>Extended |         | 502             |
| 7500            | 752           |      |                  | J.   | Voltage             |         |                 |
| 8200            | 822           |      |                  |      | 3000V               |         |                 |
| 10000           | 103           |      |                  |      | Code302             |         |                 |
| 12000           | 123           |      |                  |      | 2000V               |         |                 |
| 15000           | 153           |      |                  |      | Code                |         |                 |
| 18000           | 183           |      |                  |      | 202                 |         | 3000V           |
| 20000           | 203           |      |                  |      |                     |         | Code            |
| 22000           | 223           |      |                  |      |                     |         | 302             |
| 33000           | 333           |      |                  |      |                     |         |                 |
| 47000           | 473           |      |                  |      |                     | J.      |                 |
| 56000           | 563           |      |                  |      |                     |         |                 |
| 68000           | 683           |      |                  |      |                     |         | 1000V           |
| 82000<br>100000 | 823<br>104    |      |                  |      |                     |         | Code            |
| 120000          | 104           |      |                  |      |                     |         | 102             |
|                 |               |      |                  |      |                     |         |                 |

## **♦** DLC70 Lead Type and Dimensions

| W/L/P    | MS/MN | AR/AN |
|----------|-------|-------|
| To E     | Tr.   | TT.   |
| FN       | RW/RN | AW/BN |
| Lc Tc Tc | Tr.   | ETc.  |

unit: inch(millimeter)

|         | _              |                                             | Capacitor Dim                 | ensions                        |                               |                               | ons                          |                               |                             |
|---------|----------------|---------------------------------------------|-------------------------------|--------------------------------|-------------------------------|-------------------------------|------------------------------|-------------------------------|-----------------------------|
| Series  | Term.<br>Code  | Length<br>(Lc)                              | Width<br>(Wc)                 | Thick.<br>(Tc)                 | Overlap<br>(B)                | Length (LL)                   | Width<br>(WL)                | Thickness (TL)                | Plated<br>Material          |
|         | MS/MN<br>AR/AN | .614<br>+.015~010<br>(15.60<br>+0.38~-0.25) |                               |                                | )) (0.60~1.50)                | .748<br>(19.00)<br>min        | .350 ± .010<br>(8.89 ± 0.25) | .008 ± .001<br>(0.20 ± 0.025) | 611                         |
| DLC70F  | RW/RN          |                                             | .433 ± .010<br>(11.00 ± 0.25) | .197<br>(5.00)<br>max          |                               | .748<br>(19.00)<br>min        | Dia.=.030±.004               | Silver-<br>plated<br>Copper   |                             |
|         | AW/BN          |                                             |                               |                                | .906<br>(23.00)<br>min        | (0.76±0.10)                   |                              |                               |                             |
|         | MS/MN<br>AR/AN | R/AN .760 .760 ± .010 .760 ± .010 (5.00)    |                               | .748<br>(19.00)<br>min         | .591 ± .010<br>(15.00 ± 0.25) | .008 ± .001<br>(0.20 ± 0.025) |                              |                               |                             |
| DLC70G  | RW/RN          |                                             |                               | (5.00)                         | 5.00)   .024~.059             | .748<br>(19.00)<br>min        | Dia.=.030±.004               |                               | Silver-<br>plated<br>Copper |
|         | AW/BN          |                                             | .906<br>(23.00)<br>min        | (0.76±0.10)                    |                               |                               |                              |                               |                             |
| DI 0701 | [5.00]         | .039~.071                                   | .748<br>(19.00)<br>min        | 1.299 ± .020<br>(33.00 ± 0.50) | .012 ± .001<br>(0.30 ± 0.025) | Silver-<br>plated             |                              |                               |                             |
| DLC70L  | FN             | [(34.29±1.27)                               | (34.29±1.27)                  | max                            | (1.00~1.80)                   | .669<br>(17.00)<br>min        | .157 ± .008<br>(4.00 ± 0.20) | .012 ± .001<br>(0.30 ± 0.025) | Copper                      |



#### **♦**Performance

| ltem                                  | Specifications                                                                                                                                                                                |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quality Factor (Q)                    | Less than 1000pF, Q value more than 2000, Test frequency 1MHz;<br>More than 1000pF, Q value more than 2000, Test frequency 1KHz;                                                              |
| Insulation Resistance (IR)            | Test Voltage: $500V$<br>$10^5$ Megohms min. @ $+25$ °C at rated WVDC.<br>$10^4$ Megohms min. @ $+125$ °C at rated WVDC.                                                                       |
| Rated Voltage                         | See Rated Voltage Table                                                                                                                                                                       |
| Dielectric Withstanding Voltage (DWV) | 250% of Rated Voltage for 5 seconds, Rated Voltage ≤500VDC  150% of Rated Voltage for 5 seconds, 500VDC < Rated Voltage ≤1250VDC  120% of Rated Voltage for 5 seconds, Rated Voltage >1250VDC |
| Operating Temperature Range           | −55°C to +125°C<br>Notes: For higher temperature, please contact with Dalicap.                                                                                                                |
| Temperature Coefficient (TC)          | 0 ±30 ppm/℃                                                                                                                                                                                   |
| Capacitance Drift                     | $\pm$ 0.2% or $\pm$ 0.05pF, whichever is greater.                                                                                                                                             |
| Piezoelectric Effects                 | None                                                                                                                                                                                          |

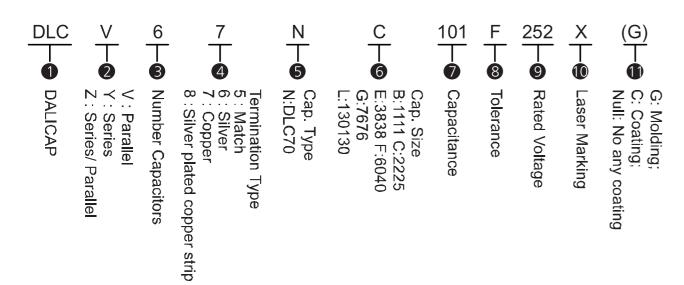
Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

## **♦**Environmental Tests

| Item                       | Specifications                                                                                                                 | Method                                                                                                                                                                                                                                                |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Thermal<br>Shock           | DWV: the initial value IR: Shall not be less than 30% of the initial value Capacitance change: no more than 0.5% or 0.5pF.     | MIL-STD-202, Method 107, Condition A. At the maximum rated temperature stay 15 minutes. The time of removing shall not be more than 5 minutes.  Perform the five cycles.                                                                              |
| Moisture<br>Resistance     | whichever is greater.                                                                                                          | MIL-STD-202, Method 106.                                                                                                                                                                                                                              |
| Humidity<br>(steady state) | DWV: the initial value<br>IR: the initial value<br>Capacitance change:<br>no more than 0.3% or 0.3pF.<br>whichever is greater. | MIL-STD-202, Method 103, Condition A, with 1.5 Volts D.C. applied while subjected to an environment of 85 °C with 85% relative humidity for 240 hours minimum.                                                                                        |
| Life                       | IR: Shall not be less than 30% of the initial value Capacitance change: no more than 2.0% or 0.5pF. whichever is greater.      | MIL-STD-202, Method 108, for 2000 hours, at 125 °C. 200% of Rated Voltage for Capacitors, Rated Voltage ≤ 500VDC 120% of Rated Voltage for Capacitors, 500VDC < Rated Voltage ≤ 1250VDC 100% of Rated Voltage for Capacitors, Rated Voltage > 1250VDC |

## Dalicap

## Capacitor Assemblies Offering


#### **♦** Product Features

High Operating Voltage, High Operating Current, Extended Capacitance, Tighter Tolerances, High Reliability, High Q, Ultra-low ESR, Non-Magnetic.

#### **◆**Typical Applications Field

High Power RF, Medical Electronics, Broadcast, Semiconductor Manufacturing, High Magnetic Environments, Inductive Heating.

#### **♦** Part Numbering



Capacitance: For capacitor values requiring 3 significant digits,

e.g. 1222.5pF = 1222R5

e.g. DLCV66NC101F252X

Silver bracket assembly with six DLC70 pieces in parallel, Capacitance is 100pF,

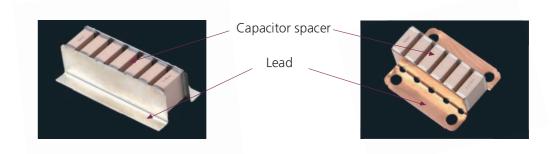
Capacitance tolerance is  $\pm 1\%$ , WVDC is 2500 V and Laser marking.

e.g. DLCY26NG1222R5G203X

Silver bracket assembly with two DLC70 pieces in series, Capacitance is 1222.5pF,

Capacitance tolerance is  $\pm 2\%$ , WVDC is 20,000V and Laser marking.

#### **♦** Capacitance and Voltage


By Buyer's requirements using existing drawings, mechanical sketches, or we can help with capable modeling of assemblies thermal rise predictions.

## **♦**Typical Assembly Configurations

#### ① Parallel Assemblies

unit: inch(millimeter)

|                         | 70B                 | 70C           | 70E                                               | 70F | 70G |  |  |  |
|-------------------------|---------------------|---------------|---------------------------------------------------|-----|-----|--|--|--|
| Lead Material           |                     | Silver-plated | ed Copper or silver                               |     |     |  |  |  |
| Lead Thickness          | .004 or .010        | (0.1 or 0.25) | .010 or .020 (0.25 or 0.51)                       |     |     |  |  |  |
| Lead Length (max.)      | .50 (12.7)          | .75 (19.1)    | 2.0 (50.8)                                        |     |     |  |  |  |
| Capacitor Spacer (typ.) | .050 to .078        | 3 (1.3 to 2)  | .06 to .10 (1.5 to 2.5) .078 to .197 (2.0 to 5.0) |     |     |  |  |  |
| Mtg Configuration       | Horizontal/Vertical |               |                                                   |     |     |  |  |  |



#### ② Series Assemblies

unit: inch(millimeter)

|                         | 70C                | 70E                            | 70F        | 70G |  |  |  |  |  |  |
|-------------------------|--------------------|--------------------------------|------------|-----|--|--|--|--|--|--|
| Lead Type               |                    | L-Bracket                      |            |     |  |  |  |  |  |  |
| Lead Material           |                    | Silver-plated Copper or silver |            |     |  |  |  |  |  |  |
| Lead Thickness          | .010 (0.25)        | .010 or .020 (0.2              | 5 or 0.51) |     |  |  |  |  |  |  |
| Lead Length (max.)      | .75 (19.1)         | 1.0 (25.4                      | 1)         |     |  |  |  |  |  |  |
| Capacitor Spacer (typ.) | 0 to .157 (0 to 4) |                                |            |     |  |  |  |  |  |  |
| Mtg Configuration       |                    | Horizont                       | al         |     |  |  |  |  |  |  |

#### 3 Epoxy Molding





4 Other Assemblies By Buyer's requirement

13





## DLC75 Series Ultra-Low ESR, RF/Microwave Ceramic Capacitors

## DLC75 Series Ultra-Low ESR, RF/Microwave Ceramic Capacitors

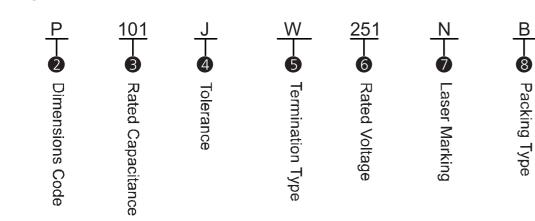
#### **♦** Product Features

Ultra-Low ESR, High Working Voltage, High RF Power, High Self-Resonance Frequency.



### **◆**Product Applications

Typical Circuit Applications: High Power Filter Networks, Mixers, Couplers, Matching Networks, Output


Coupling, Antenna Coupling, DC blocking, Bypass.

Typical Applications Field: VHA/UHF/Microwave Communication Systems, Mobile Base Stations,

Repeaters, Wireless Broadcasting Equipments, Radio Stations,

Radar, WiMAX, Satellite Communications.

#### **♦** Part Numbering



① Series: Dalicap 75 Series Low ESR Microwave Capacitor, Temperature Coefficient: 0 ± 30ppm/°C.

#### 2 Dimensions Code

unit:inch(millimeter)

|           | DLC75N                     | DLC75H                       | DLC75P                   | DLC75D        | DLC75B            | DLC75R        |
|-----------|----------------------------|------------------------------|--------------------------|---------------|-------------------|---------------|
| Length    | .024±.001                  | $.040 \pm .004$              | .063±.006                | .078 ± .010   | .110(+.020~—.010) | .070 ± .006   |
|           | (0.60±0.03)                | (1.02 $\pm$ 0.10)            | (1.60±0.15)              | (2.00 ± 0.25) | (2.79+0.51~—0.25) | (1.78 ± 0.15) |
| Width     | .012±.001                  | $.020 \pm .004$              | .031±.006                | .049 ± .010   | .110 ±.010        | .080 ± .006   |
|           | (0.30±0.03)                | (0.51 $\pm$ 0.10)            | (0.80±0.15)              | (1.20 ± 0.25) | (2.79 ±0.25)      | (2.03 ± 0.15) |
| Thickness | .012 ±.001<br>(0.30 ±0.03) | .020 ± .004<br>(0.51 ± 0.10) | .031±.006<br>(0.80±0.15) | .057(1.45)max | .102(2.60)max     | .120(3.04)max |

#### ③ Rated Capacitance

Capacitance is less than 10pF; for example: 1R0=1.0pF, R denotes decimal point
Capacitance greater than 10pF; for example: 101=100pF, the third number is the power of 10.

### **4** Tolerance

| Code      | А       | В      | С       | D      | F   | G   | J   |
|-----------|---------|--------|---------|--------|-----|-----|-----|
| Tolerance | ±0.05pF | ±0.1pF | ±0.25pF | ±0.5pF | ±1% | ±2% | ±5% |

### ⑤ Termination Type

| Code | W                            |
|------|------------------------------|
| Туре | Nickel, Plated 100% Sn(RoHS) |

#### 

| Code | Rated Voltage(V) |
|------|------------------|
| 250  | 25               |
| 500  | 50               |
| 251  | 250              |
| 501  | 500              |

#### ① Laser Marking

X denotes Marking. Capacitance is less than 10pF; for example: the marking of 1.0pF is 1R0.

Capacitance is not less than 10pF; for example: the marking of 100pF is 101.

N denotes no marking.

#### Packaging Type

|                            | 75N      | 75H | 75P      | 75D      | 75B | 75R          |
|----------------------------|----------|-----|----------|----------|-----|--------------|
| T: Horizontal Taping       | <b>√</b> | V   | <b>√</b> | <b>√</b> | V   | $\checkmark$ |
| B: Bulk packaging in a bag |          |     | <b>√</b> | <b>√</b> | V   | <b>√</b>     |
| TV: Vertical Taping        |          |     |          | √        | V   |              |

#### **♦** Performance Requirements

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

#### ♦ All products are in compliance with RoHS instruction.



# Dalicap

## **♦**Capacitance & Rated Voltage Table

|        | Rated |           |                |      |               |      | Size(i        | nch) |                |          |                |      |                |
|--------|-------|-----------|----------------|------|---------------|------|---------------|------|----------------|----------|----------------|------|----------------|
| Cap.pF | WVDC  |           | .C75N<br>)201) |      | C75H<br>0402) |      | C75P<br>0603) |      | _C75D<br>0805) | DL<br>(( | .C75R<br>0708) |      | .C75B<br>1111) |
| Cap.pF | Code  | Tol.      | Rated          | Tol. | Rated         | Tol. | Rated         | Tol. | Rated          | Tol.     | Rated          | Tol. | Rated          |
| 0.1    | OR1   |           | WVDC           |      | WVDC          |      | WVDC          |      | WVDC           |          | WVDC           |      | WVDC           |
| 0.2    | OR2   |           |                |      |               |      |               |      |                |          |                |      |                |
| 0.3    | OR3   |           |                |      |               |      |               |      |                |          |                |      |                |
| 0.4    | OR4   |           |                |      |               |      |               |      |                |          |                |      |                |
| 0.5    | OR5   |           |                |      |               |      |               |      |                |          |                |      |                |
| 0.6    | OR6   |           |                |      |               |      |               |      |                |          |                |      |                |
| 0.7    | OR7   |           |                |      |               |      |               |      |                |          |                |      |                |
| 0.8    | OR8   |           |                |      |               |      |               |      |                |          |                |      |                |
| 0.9    | OR9   |           |                |      | 50V           |      |               |      |                |          |                |      |                |
| 1.0    | 1R0   |           |                |      | Code          |      |               |      |                |          |                |      |                |
| 1.1    | 1R1   |           |                |      | 500           |      |               |      |                |          |                |      |                |
| 1.2    | 1R2   |           |                |      | 200V          |      |               |      |                |          |                |      |                |
| 1.3    | 1R3   |           |                |      |               |      |               |      |                |          |                |      |                |
| 1.4    | 1R4   |           |                |      | or            |      |               |      |                |          |                |      |                |
| 1.5    | 1R5   | Α,        |                | Α,   | 201           | Α,   |               | Α,   |                |          |                |      |                |
| 1.6    | 1R6   | В,        |                | В,   | 250V          | В,   |               | В,   |                |          |                |      |                |
| 1.7    | 1R7   | C,        |                | C,   | Code          | C,   |               | C,   |                |          |                | В,   |                |
| 1.8    | 1R8   | D.        | 25V            | D.   | 251           | D.   |               | D.   |                |          |                |      |                |
| 1.9    | 1R9   |           | Code           |      |               |      |               |      |                |          |                | C,   |                |
| 2.0    | 2R0   |           | 250            |      |               |      |               |      |                |          |                | D.   |                |
| 2.1    | 2R1   |           |                |      |               |      |               |      |                |          |                |      |                |
| 2.2    | 2R2   |           |                |      |               |      |               |      |                | В,       |                |      |                |
| 2.4    | 2R4   |           |                |      |               |      |               |      |                | C,       |                |      |                |
| 2.7    | 2R7   |           |                |      |               |      |               |      |                | D.       |                |      |                |
| 3.0    | 3R0   |           |                |      |               |      |               |      |                |          |                |      |                |
| 3.3    | 3R3   |           |                |      |               |      |               |      |                |          |                |      |                |
| 3.6    | 3R6   |           |                |      |               |      | 250V          |      | 250V           |          | 500V           |      |                |
| 3.9    | 3R9   |           |                |      |               |      | Code          |      | Code           |          | Code           |      |                |
| 4.3    | 4R3   |           |                |      |               |      | 251           |      | 251            |          |                |      | 500V           |
| 4.7    | 4R7   |           |                |      |               |      | 25.           |      |                |          | 501            |      | Code           |
| 5.1    | 5R1   |           |                |      |               |      |               |      |                |          |                |      | 501            |
| 5.6    | 5R6   |           |                |      |               |      |               |      |                |          |                |      |                |
| 6.2    | 6R2   |           |                |      |               |      |               |      |                |          |                |      | or             |
| 6.8    | 6R8   | В,        |                | Α,   | 50V           | Α,   |               |      |                |          |                |      | 1000V          |
| 7.5    | 7R5   | C.        |                | В,   | Code          | В,   |               | В,   |                |          |                |      | Code           |
| 8.2    | 8R2   | <u>C.</u> |                | C.   | 500           | C.   |               | C.   |                |          |                |      | 102            |
| 9.1    | 9R1   |           |                |      | or            |      |               |      |                |          |                |      |                |
| 10     | 100   |           |                |      | 200V          |      |               |      |                |          |                |      |                |
| 11     | 110   | _         |                |      |               |      |               |      |                |          |                |      |                |
| 12     | 120   | F,        |                |      | Code          |      |               |      |                |          |                |      |                |
| 13     | 130   | G,        |                |      | 201           |      |               |      |                |          |                |      |                |
| 15     | 150   | J.        |                | F,   |               |      |               |      |                |          |                |      |                |
| 16     | 160   |           |                | G,   |               | F,   |               | F,   |                | G,       |                | F,   |                |
| 18     | 180   |           |                |      |               | G,   |               | G,   |                | J.       |                | G,   |                |
| 20     | 200   |           |                | J.   |               | J.   |               | J.   |                | J.       |                | J.   |                |
| 22     | 220   |           |                |      |               | J.   |               | ٦.   |                |          |                | J.   |                |
| 24     | 240   |           |                |      |               |      |               |      |                |          |                |      |                |
| 27     | 270   |           |                |      | FOY (         |      |               |      |                |          |                |      |                |
| 30     | 300   |           |                |      | 50V<br>Code   |      |               |      |                |          |                |      |                |
| 33     | 330   |           |                |      | Code<br>500   |      |               |      |                |          |                |      |                |
| 36     | 360   |           |                |      |               |      |               |      |                |          |                |      |                |
| 39     | 390   | -         |                |      |               |      |               |      |                |          |                |      |                |
| 43     | 430   |           |                |      |               |      |               |      |                |          |                |      |                |
| 47     | 470   |           |                |      |               |      |               |      |                |          |                |      |                |

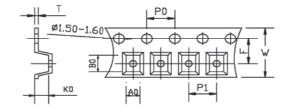
## **♦**Capacitance & Rated Voltage Table

|            | Rated      |      |                |      |               |      | Sizo          | (inch | )             |      |                |      |                                            |
|------------|------------|------|----------------|------|---------------|------|---------------|-------|---------------|------|----------------|------|--------------------------------------------|
|            | WVDC       | DI   | CZENI          | DI   | CZELI         | DI   | .C75P         |       | )<br>LC75D    | DI   | CZED           | DI   | CZED                                       |
| Cap.pF     |            | (0   | .C75N<br>)201) | ((   | C75H<br>0402) | (0   | 0603)         | (     | 0805)         | (0   | .C75R<br>)708) | (1   | .C75B<br>I111)                             |
| Cap.pF     | Code       | Tol. | Rated<br>WVDC  | Tol. | Rated<br>WVDC | Tol. | Rated<br>WVDC | Tol.  | Rated<br>WVDC | Tol. | Rated<br>WVDC  | Tol. | Rated<br>WVDC                              |
| 51         | 510        |      |                |      |               |      |               |       |               |      |                |      | E00\/                                      |
| 56         | 560        |      |                |      |               |      |               |       |               |      |                |      | 500V<br>Code                               |
| 62         | 620        |      |                |      |               | F,   | 250V          |       |               |      | 500V           |      | 501                                        |
| 68         | 680        |      |                |      |               | G,   | Code          |       |               | G,   | Code           |      | 1000V                                      |
| 75         | 750        |      |                |      |               | J.   | 251           | _     |               | J.   | 501            |      | Code                                       |
| 82         | 820        |      |                |      |               |      |               | F,    | 250V          |      |                |      | 102                                        |
| 91         | 910        |      |                |      |               |      |               | G,    | Code          |      |                |      |                                            |
| 100        | 101        |      |                |      |               |      |               | J.    | 251           |      |                |      | 2001                                       |
| 110        | 111        |      |                |      |               |      |               |       |               |      |                |      | 300V                                       |
| 120<br>130 | 121        |      |                |      |               |      |               |       |               |      |                |      | Code<br>301                                |
| 150        | 131<br>151 |      |                |      |               |      |               |       |               |      |                | F,   | 600V                                       |
| 160        | 161        |      |                |      |               |      |               |       |               |      |                | G,   | Code                                       |
| 180        | 181        | 1    |                |      |               |      |               |       |               |      |                | J.   | 601                                        |
| 200        | 201        | 1    |                |      |               |      |               |       |               |      |                | J.   |                                            |
| 220        | 221        |      |                |      |               |      |               |       |               |      |                |      |                                            |
| 240        | 241        |      |                |      |               |      |               |       |               |      |                |      | 200V                                       |
| 270        | 271        | 1    |                |      |               |      |               |       |               |      |                |      | Code                                       |
| 300        | 301        | ]    |                |      |               |      |               |       |               |      |                |      | 201                                        |
| 330        | 331        |      |                |      |               |      |               |       |               |      |                |      | 500V                                       |
| 360        | 361        |      |                |      |               |      |               |       |               |      |                |      | Code                                       |
| 390        | 391        |      |                |      |               |      |               |       |               |      |                |      | 501                                        |
| 430        | 431        |      |                |      |               |      |               |       |               |      |                |      |                                            |
| 470        | 471        |      |                |      |               |      |               |       |               |      |                |      | 100\/                                      |
| 510        | 511        |      |                |      |               |      |               |       |               |      |                |      | 100V<br>Code<br>101<br>500V<br>Code<br>501 |
| 560<br>620 | 561        |      |                |      |               |      |               |       |               |      |                | G,   | 500V<br>Code                               |
| 680        | 621<br>681 |      |                |      |               |      |               |       |               |      |                | J.   | 501                                        |
| 750        | 751        | -    |                |      |               |      |               |       |               |      |                | J.   | 50V                                        |
| 820        | 821        | İ    |                |      |               |      |               |       |               |      |                |      | Code                                       |
| 910        | 911        |      |                |      |               |      |               |       |               |      |                |      | 500                                        |
| 1000       | 102        |      |                |      |               |      |               |       |               |      |                |      |                                            |
|            |            |      |                |      |               |      |               |       |               |      |                |      |                                            |
|            |            |      |                |      |               |      |               |       |               |      |                |      |                                            |
|            |            |      |                |      |               |      |               |       |               |      |                |      |                                            |
|            |            |      |                |      |               |      |               |       |               |      |                |      |                                            |
|            |            |      |                |      |               |      |               |       |               |      |                |      |                                            |
|            |            |      |                |      |               |      |               |       |               |      |                |      |                                            |
|            |            |      |                |      |               |      |               |       |               |      |                |      |                                            |
|            |            |      |                |      |               |      |               |       |               |      |                |      |                                            |
|            |            |      |                |      |               |      |               |       |               |      |                |      |                                            |
|            |            |      |                |      |               |      |               |       |               |      |                |      |                                            |
|            |            |      |                |      |               |      |               |       |               |      |                |      |                                            |
|            |            |      |                |      |               |      |               |       |               |      |                |      |                                            |
|            |            |      |                |      |               |      |               |       |               |      |                |      |                                            |
|            |            |      |                |      |               |      |               |       |               |      |                |      |                                            |
|            |            |      |                |      |               |      |               |       |               |      |                |      |                                            |
|            |            |      |                |      |               |      |               |       |               |      |                |      |                                            |
|            |            |      |                |      |               |      |               |       |               |      |                |      |                                            |
|            |            |      |                |      |               |      |               |       |               |      |                |      |                                            |
|            |            |      |                |      |               |      |               |       |               |      |                |      |                                            |
|            |            |      |                |      |               |      |               |       |               |      |                |      |                                            |
|            |            |      |                |      |               |      |               |       |               |      |                |      |                                            |

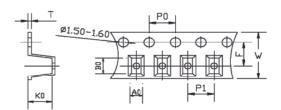
## **♦**Performance

| <b>I</b> tem                          | Specifications                                                                            |
|---------------------------------------|-------------------------------------------------------------------------------------------|
| Quality Factor (Q)                    | Greater than 2,000 at 1 $\pm$ 0.1MHz                                                      |
| Insulation Resistance (IR)            | $10^5$ Megohms min. @ +25°C at rated WVDC.<br>$10^4$ Megohms min. @ +125°C at rated WVDC. |
| Rated Voltage                         | See Rated Voltage Table                                                                   |
| Dielectric Withstanding Voltage (DWV) | 250% of rated voltage for 5 seconds.                                                      |
| Operating Temperature Range           | −55 °C to +150 °C<br>Notes: For higher temperature, please contact with Dalicap.          |
| Temperature Coefficient (TC)          | 0 ± 30ppm/℃                                                                               |
| Capacitance Drift                     | $\pm 0.2\%$ or $\pm 0.05$ pF, whichever is greater.                                       |
| Piezoelectric Effects                 | None                                                                                      |

## **◆**Environmental Tests


| Item                       | Specifications                                                                                                                 | Method                                                                                                                                                                                                                                             |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Thermal<br>Shock           | DWV: the initial value IR: Shall not be less than 30% of the initial value Capacitance change: no more than 0.5% or 0.5pF.     | MIL-STD-202, Method 107, Condition A. At the maximum rated temperature stay 15 minutes. The time of removing shall not be more than 5 minutes. Perform the five cycles.                                                                            |
| Moisture<br>Resistance     | whichever is greater.                                                                                                          | MIL-STD-202, Method 106.                                                                                                                                                                                                                           |
| Humidity<br>(steady state) | DWV: the initial value<br>IR: the initial value<br>Capacitance change:<br>no more than 0.3% or 0.3pF.<br>whichever is greater. | MIL-STD-202, Method 103, Condition A, with 1.5 Volts D.C. applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.                                                                                      |
| Life                       | IR: Shall not be less than 30% of the initial value Capacitance change: no more than 2.0% or 0.5pF. whichever is greater.      | MIL-STD-202, Method 108, for 2000 hours, at 125°C. 200% of Rated Voltage for Capacitors, Rated Voltage ≤500VDC 120% of Rated Voltage for Capacitors, 500VDC < Rated Voltage ≤1250VDC 100% of Rated Voltage for Capacitors, Rated Voltage > 1250VDC |




## **◆**Tape & Reel Specifications

|                 | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | W<br>(mm) | P0<br>(mm) | P1<br>(mm) | T<br>(mm) | F<br>(mm) | Qty/min | Qty/reel | Tape<br>Material |
|-----------------|------------|------------|------------|-----------|------------|------------|-----------|-----------|---------|----------|------------------|
| 0201-H          | 0.40       | 0.70       | -          | 8.00      | 4.00       | 2.00       | 0.42      | 3.50      | 1000    | 15000    | Paper            |
| 0402 <b>-</b> H | 0.70       | 1.20       | -          | 8.00      | 4.00       | 2.00       | 0.65      | 3.50      | 1000    | 10000    | Paper            |
| 0603-H          | 1.05       | 1.80       | -          | 8.00      | 4.00       | 4.00       | 0.95      | 3.50      | 500     | 4000     | Paper            |
| 0708-H          | 1.90       | 2.65       | 2.20       | 8.00      | 4.00       | 4.00       | 0.25      | 3.50      | 500     | 1000     | Plastic          |
| 0805-H          | 1.45       | 2.30       | 0.95       | 8.00      | 4.00       | 4.00       | 0.22      | 3.50      | 500     | 3000     | Plastic          |
| 0805-H          | 1.37       | 2.20       | 1.20       | 8.00      | 4.00       | 4.00       | 0.22      | 3.50      | 500     | 3000     | Plastic          |
| 0805-V          | 1.35       | 2.25       | 1.35       | 8.00      | 4.00       | 4.00       | 0.22      | 3.50      | 500     | 1000     | Plastic          |
| 1111-H          | 2.85       | 3.50       | 1.95       | 8.00      | 4.00       | 4.00       | 0.25      | 3.50      | 500     | 2000     | Plastic          |
| 1111-H          | 2.85       | 3.60       | 2.40       | 8.00      | 4.00       | 4.00       | 0.25      | 3.50      | 500     | 2000     | Plastic          |
| 1111-V          | 2.30       | 3.55       | 2.70       | 12.00     | 4.00       | 4.00       | 0.40      | 5.50      | 500     | 1500     | Plastic          |


## Horizontal Orientation



## Vertical Orientation





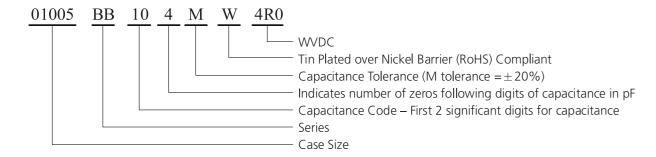


#### Broadband Ceramic Capacitors

#### **◆**Product Features

| Series                           | Typical operating frequency range                       | Insertion Loss | Plated Material | Packaging Type                                |
|----------------------------------|---------------------------------------------------------|----------------|-----------------|-----------------------------------------------|
| (.010 " × .005 ")01005BB104MW4R0 | 16KHz(-3dB) to >67GHz                                   | <1dB,typical   |                 | 40K pcs/reel,<br>lower quantities in cut tape |
| (.020 " × .010 ")0201BB104KW160  | 16KHz(-3dB) to >40GHz                                   | <1dB,typical   | Au/Co /DollC)   | 15K pcs/reel,                                 |
| (.020 " × .010 ")0201BB103KW250  | 16KHz(-3dB) to >32GHz                                   | <1dB,typical   | Au/Sn (RoHS)    | lower quantities in cut tape                  |
| (.040 " × .020 ")0402BB103KW500  | 16KHz(-3dB) to 40GHz                                    | <1dB,typical   | Au/Sn (RoHS)    | 10K pcs/reel,                                 |
| (.040 " × .020 ")0402BB104KW500  | 16KHz(-3dB) to 50GHz                                    | <1.2dB,typical | Au/ 311 (NO113) | lower quantities in cut tape                  |
| (.080 " × .050 ")0805BB103KW101  | 0" × .050")0805BB103KW101 16KHz(-3dB) to 3GHz <0.25dB,t |                | Ni/Sn(RoHS)     |                                               |

#### **◆**Mechanical Dimensions


unit:inch(millimeter)

|          |       | Capacitor Dimensions           |                                      |                          |                |  |  |  |  |  |  |  |
|----------|-------|--------------------------------|--------------------------------------|--------------------------|----------------|--|--|--|--|--|--|--|
| Outlines | Code  | Length<br>(L)                  | Width<br>(W)                         | Thick.<br>(T)            | (S)            |  |  |  |  |  |  |  |
|          | 01005 | .016 ± .001<br>(0.40 ± 0.03)   | .008 ± .001<br>(0.20 ± 0.03)         | .008±.001<br>(0.20±0.03) | .005(0.13)min  |  |  |  |  |  |  |  |
| T        | 0201  | .023 ± .001<br>(0.58 ± 0.03)   | .012 ± .001<br>(0.30 ± 0.03)         | .0118(0.30)max           | .0078(0.20)min |  |  |  |  |  |  |  |
| P ST     | 0402  | .040 ± .004<br>(1.016 ± 0.102) | $.020 \pm .004 \\ (0.508 \pm 0.102)$ | .024(0.61)max            | .016(0.406)min |  |  |  |  |  |  |  |
|          | 0805  | .080 ± .006<br>(2.03 ± 0.15)   | .050 ± .006<br>(1.27 ± 0.15)         | .040(1.02)max            | .044(1.12)min  |  |  |  |  |  |  |  |

#### **♦**Electrical Specifications

| Item                                  | Series                                      |                         |                    |                    |                    |                    |  |  |  |  |
|---------------------------------------|---------------------------------------------|-------------------------|--------------------|--------------------|--------------------|--------------------|--|--|--|--|
| Rated Voltage                         | 01005BB104<br>MW4R0                         | 0201BB104<br>KW160      | 0201BB103<br>KW250 | 0402BB103<br>KW500 | 0402BB104<br>KW500 | 0805BB103<br>KW101 |  |  |  |  |
| 3                                     | 4WVDC                                       | 16WVDC                  | 50WVDC             | 100WVDC            |                    |                    |  |  |  |  |
| Capacitance                           | 100nF                                       | 100nF 10nF 10nF 100nF 1 |                    |                    |                    |                    |  |  |  |  |
| Operating Temperature Range.          | -55°C to +85°C                              |                         |                    |                    |                    |                    |  |  |  |  |
| Insulation Resistance (IR)            | 10 <sup>11</sup> Ω min. @ +25℃ @ rated WVDC |                         |                    |                    |                    |                    |  |  |  |  |
| Dielectric Withstanding Voltage (DWV) | 250% of rated v                             | oltage for 5 sec        | conds.             |                    |                    |                    |  |  |  |  |
| Temperature Coefficient (TC)          | ±15%                                        |                         |                    |                    |                    |                    |  |  |  |  |

#### **◆Part Numbering**





#### **♦**Introduction

There are a number of circuits that require coupling RF signals or bypassing them to ground while blocking DC over extraordinarily large RF bandwidths. The applications for which they are intended typically require small, surface-mountable (SMT) units with low insertion losses, reflections, and impedances across RF frequencies extending from the tens of KHz to the tens of GHz. and temperatures typically ranging from -55 to +85 °C. This note focuses on a particular implementation of these devices -- multilayer ceramic capacitors (MLCCs)- and how to obtain the best performance when they're used on various substrates.

Broadband capacitors are used in the "signal integrity" market -- optoelectronics/high-speed data; ROSA/TOSA (Transmit/Receive optical subassemblies); SONET (Synchronous Optical Networks); broadband test equipment - as well as in broadband microwave and millimeter wave amplifiers (MMICs, GaN transistors) and oscillators. The basic requirement in the former is to produce an output waveform that closely replicates an input waveform, typically a train of digital pulses, as shown in Fig.1.

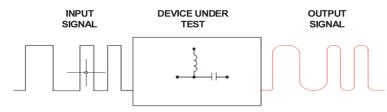



Fig.1"Signal Integrity"- output replication of input

While RF and microwave devices are typically measured in the frequency domain, digital systems are usually characterized in the time domain, and so it is necessary to make a connection between the two (Fig.2).

#### FREQUENCY DOMAIN

- Insertion loss
- Reflection



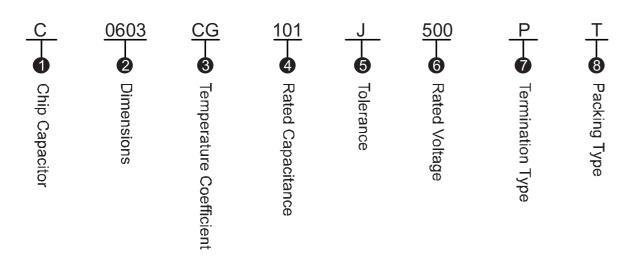
Fig.2 Frequency domain and time domain parameters

#### TIME DOMAIN

- Rise and fall times
- Eye opening
- Jitter








## General Purpose Non-Magnetic Multilayer Ceramic Capacitors

#### **♦**Product Features

Non-Magnetic, Suitable for MRI and other equipment requiring non-magnetic.

#### **♦**Part Numbering



#### ① C: General Purpose Non-Magnetic Multilayer Ceramic Capacitors

#### 2 Dimensions

|        |                 |                 |                 |        | unit. millimeter |
|--------|-----------------|-----------------|-----------------|--------|------------------|
| Series | L               | W               | Т               | B(Min) | B(Max)           |
| 0603   | $1.60 \pm 0.10$ | $0.80 \pm 0.10$ | $0.80 \pm 0.10$ | 0.20   | 0.50             |
| 0805   | 2.00 ± .020     | 1.20 ± .020     | 1.40            | 0.25   | 0.60             |
| 1206   | 3.20±.020       | 1.60 ± .020     | 1.40            | 0.25   | 0.60             |
| 1210   | 3.20 ± .020     | 2.50 ± .020     | 2.00            | 0.25   | 0.70             |

## **3 Temperature Coefficient**

CG: 0 ± 30ppm/℃

X: ±15%

### 

Capacitance is less than 10pF; for example: 1R0=1.0pF, R denotes decimal point.

Capacitance greater than 10pF; for example: 101=100pF, the third number is the power of 10.

#### ⑤ Tolerance

| Code      | В      | С       | D      | G   | J   | К    |
|-----------|--------|---------|--------|-----|-----|------|
| Tolerance | ±0.1pF | ±0.25pF | ±0.5pF | ±2% | ±5% | ±10% |

## 

| Code | Rated Voltage(V) | Code | Rated Voltage(V) |
|------|------------------|------|------------------|
| 250  | 25               | 251  | 250              |
| 500  | 50               | 501  | 500              |
| 101  | 100              | 102  | 1000             |
| 201  | 200              | 202  | 2000             |

### ① Laser Marking

P: 100% Sn Solder over Copper Plating (RoHS Compliant)

## Packaging Type

T: Tape carrier packing

|      | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | W<br>(mm) | P0<br>(mm) | P1<br>(mm) | T<br>(mm) | F<br>(mm) | Qty/min | Qty/reel | Tape<br>Material |
|------|------------|------------|------------|-----------|------------|------------|-----------|-----------|---------|----------|------------------|
| 0603 | 1.05       | 1.80       | 0.90       | 8.00      | 4.00       | 4.00       | 0.90      | 3.50      | 1000    | 4000     | Paper            |
| 0805 | 1.40       | 2.20       | 1.20       | 8.00      | 4.00       | 4.00       | 0.22      | 3.50      | 1000    | 3000     | Plastic          |
| 1206 | 1.91       | 3.51       | 1.30       | 8.00      | 4.00       | 4.00       | 0.25      | 3.50      | 1000    | 3000     | Plastic          |
| 1210 | 2.85       | 3.50       | 1.95       | 8.00      | 4.00       | 4.00       | 0.25      | 3.50      | 1000    | 3000     | Plastic          |

# **D**alicap

## **♦**Capacitance & Rated Voltage Table

unit: V

| CG    |    |    | 0603 | 3   |     |    | 08  | 05  |     | 1206 |     |     |     |     |    | 1210 |     |     |     |      |
|-------|----|----|------|-----|-----|----|-----|-----|-----|------|-----|-----|-----|-----|----|------|-----|-----|-----|------|
| Code. | 25 | 50 | 100  | 200 | 250 | 50 | 100 | 200 | 250 | 50   | 100 | 200 | 250 | 500 | 50 | 100  | 200 | 250 | 500 | 1000 |
| 1R0   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 1R2   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 1R5   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 1R8   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 2R2   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 2R7   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 3R3   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 3R9   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 4R7   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 5R6   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 6R8   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 8R2   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 100   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 120   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 150   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 180   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 220   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 270   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 330   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 390   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 470   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 560   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 680   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 820   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 101   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 121   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 151   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 181   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 221   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 271   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 331   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 391   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 471   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 561   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 681   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 821   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
| 102   |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
|       |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
|       |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
|       |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
|       |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |
|       |    |    |      |     |     |    |     |     |     |      |     |     |     |     |    |      |     |     |     |      |

## **♦**Capacitance & Rated Voltage Table

unit: V

| X7R   | 0603 |    |     |     |     | ΩΩ | 05  |     | 1206 1210 |    |     |     |     | 210 |    |     |     |     |     |      |
|-------|------|----|-----|-----|-----|----|-----|-----|-----------|----|-----|-----|-----|-----|----|-----|-----|-----|-----|------|
| Code. | 25   | 50 | 100 | 200 | 250 | 50 | 100 | 200 | 250       | 50 | 100 | 200 | 250 | 500 | 50 | 100 | 200 | 250 | 500 | 1000 |
| 331   | 25   | 30 | 100 | 200 | 250 | 50 | 100 | 200 | 250       | 50 | 100 | 200 | 230 | 500 | 50 | 100 | 200 | 230 | 500 | 1000 |
| 471   |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
| 681   |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
| 821   |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
| 102   |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
| 152   |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
| 222   |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
| 332   |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
| 472   |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
| 682   |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
| 103   |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
| 153   |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
| 223   |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
| 333   |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
| 473   |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
| 683   |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
| 104   |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
| 154   |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
| 224   |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
| 334   |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
| 474   |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
| 684   |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
| 105   |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
|       |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
|       |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
|       |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
|       |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
|       |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
|       |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
|       |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
|       |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
|       |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
|       |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
|       |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
|       |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
|       |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
|       |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
|       |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
|       |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
|       |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |
|       |      |    |     |     |     |    |     |     |           |    |     |     |     |     |    |     |     |     |     |      |



## General Purpose Non-Magnetic Multilayer Ceramic Capacitors

## **♦** Specifications and Test Methods

| No. | Item                                           | Specification                                                              | Test Method                                                                                                                                                                                                                             |  |  |  |  |
|-----|------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1   | Operating<br>Temperature                       | C0G: −55°C ~+125°C<br>X7R: −55°C ~+125°C                                   |                                                                                                                                                                                                                                         |  |  |  |  |
| 2   | Appearance                                     | No defects or abnormality                                                  | Visual inspection: ×10 microscope.                                                                                                                                                                                                      |  |  |  |  |
| 3   | Dimensions                                     | See the previous pages                                                     | Callipers inspection                                                                                                                                                                                                                    |  |  |  |  |
| 4   | Capacitance                                    | Shall be Within the applicable tolerance specified.                        |                                                                                                                                                                                                                                         |  |  |  |  |
| 5   | D.F.                                           | COG: Cap ≥ 30pF, Q ≥ 1000; Cap < 30pF, Q ≥ 400+20C  X7R: D.F. ≤ 2.5%       | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                |  |  |  |  |
| 6   | Insulation<br>Resistance<br>(IR)               | No less than $10G\Omega$ or $500M\Omega$ $\mu$ F, whichever is smaller.    | Voltage: DC Rated Voltage<br>Charging Time: 1~2 min<br>Charge/discharge current: 50mA max.<br>Measurement Temperature: 25°C<br>Measurement Humidity: 75%                                                                                |  |  |  |  |
| 7   | Dielectric<br>Withstanding<br>Voltage<br>(DWV) | Shall be no evidence of breakdown or visible evidence of arcing or damage. | 1. Test Voltage: 250% of Rated Voltage, Rated Voltage ≤ 500VDC 150% of Rated Voltage, 500VDC < Rated Voltage ≤ 1250VDC 120% of Rated Voltage, Rated Voltage > 1250VDC 2. Applied Time: 1s to 5 s 3. Charge/discharge current: 50mA max. |  |  |  |  |



## General Purpose Non-Magnetic Multilayer Ceramic Capacitors

## **♦**Specifications and Test Methods

| No. | Item                             | Specification                                                                                           | Test Method                                                                                                                                                                                                                                            |
|-----|----------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8   | Temperature<br>Coefficient       | Type Temperature coefficient ppm/°C  COG 0±30  Type Temperature Characteristics  X7R ±15%               | Conduct the five cycles according to the temperatures as below.                                                                                                                                                                                        |
| 9   | Adhesive Strength of Termination | No removal of the terminations or other defect should occur.                                            | Pressurizing force:<br>01R5/0201: 2N; 0402/0603: 5N;<br>0805/1206/1210/1812: 10N<br>Test time: 10±1 sec.                                                                                                                                               |
| 10  | Bending<br>Strength              | No cracking shall occur.  Cap change:  C0G: within ±5% or 0.5pF whichever is larger  X7R: within ±12.5% | Solder the capacitor on test jig (glass epoxy board).  Then apply a force in the direction shown in below fig.  Flexure: 1mm; Holding time: 5±1s  Pressurizing Speed:1.0mm/s  Pressurize  Flexure  Capacitance meter  45  Fig.2 (in mm)  Fig.2 (in mm) |
| 11  | Solderability of<br>Termination  | Shall be at least 85 percent covered with a smooth solder coating.                                      | Immerse the capacitor in a eutectic solution requirement temperature (230±5°C) for 2±0.5 seconds. Capacitor shall be immersed to a depth of 10mm.                                                                                                      |

**ծ** 28



#### **General Purpose Non-Magnetic Multilayer Ceramic Capacitors**

#### **♦** Specifications and Test Methods

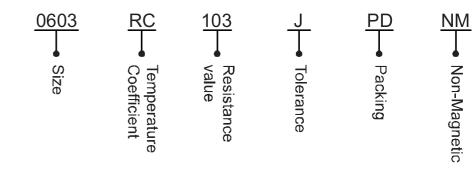
| No. | Item                 |                          | Specification                                                                        | Test Method                                                                                                                                                                                                                                   |
|-----|----------------------|--------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                      | Appearance               | No evidence of mechanical damage or delamination or exposed.                         |                                                                                                                                                                                                                                               |
| 12  | Resistance<br>to     | Capacitance<br>Change ∆C | C0G: Within $\pm 2.5\%$ or $0.25pF$ (Whichever is larger) X7R: Within $\pm 12.5\%$ . | Immerse the capacitor in a eutectic solution at $265 \pm 5$ °C for $10 \pm 1$ seconds. Capacitor shall be                                                                                                                                     |
|     | Soldering<br>Heat    | D.F.                     | To meet initial requirement.                                                         | immersed to a depth of 10mm.  And following a minimum 10 minutes to                                                                                                                                                                           |
|     |                      | Insulation<br>Resistance | No less than $10G\Omega$ or $500M\Omega\mu$ F, Whichever is smaller.                 | maximum 24 hours cooling period.                                                                                                                                                                                                              |
|     |                      | Appearance               | No evidence of mechanical damage                                                     |                                                                                                                                                                                                                                               |
|     |                      | Capacitance<br>Change ∆C | C0G: Within $\pm 2.5\%$ or $0.25pF$ (Whichever is larger) X7R: Within $\pm 7.5\%$ .  | Fix the capacitor to the supporting jig in the same manner and under the same conditions as (11). Perform the five cycles according to the four heat treatments listed in the following table. Set it for $24\pm2$ hours at room temperature. |
| 13  | Temperature<br>Cycle | D.F.                     | To meet initial requirement.                                                         | Step Temperature(°C) Time(minutes)                                                                                                                                                                                                            |
|     |                      | Insulation<br>Resistance | No less than $10G\Omega$ or $500M\Omega\mu$ F, Whichever is smaller.                 | $ \begin{array}{c ccccc}  & 1 & -55 \degree (0 \sim -3 \degree ) & 30 \pm 3 \\ \hline  & 2 & 25 \degree C & 2 \sim 3 \\ \hline  & 3 & 125 \degree C (0 \sim -3) & 30 \pm 3 \\ \hline  & 4 & 25 \degree C & 2 \sim 3 \end{array} $             |

Dalicap

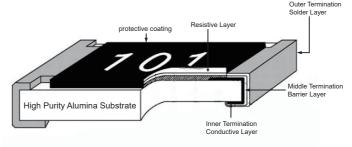
#### **Non-Magnetic Chip Resistors**

#### Non-Magnetic Chip Resistors

#### **♦**Product Features


- 1. Non-Magnetic chip resistors by copper plating on middle termination.
- 2. Suited for reflow and flow solder.
- 3. Suitable for no lead soldering.
- 4. Lead free, Meet RoHS compliant.

#### **◆Product Applications**

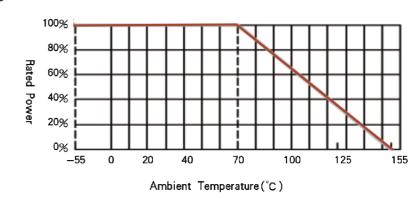

Chip resistor

MRI medical equipment, Measurement instrument, other non-magnetic applications.

#### **♦**Part Number



## **♦**Configuration




Construction of Chip-Resistor

#### **♦**Dimensions

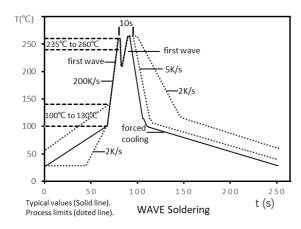
|            | Size | L           | W           | С           | D               | Т           |
|------------|------|-------------|-------------|-------------|-----------------|-------------|
| L ×C       | 0603 | 1.60 ± 0.10 | 0.80 ± 0.10 | 0.30 ± 0.20 | $0.30 \pm 0.20$ | 0.45 ± 0.10 |
| w// 103 // | 0805 | 2.00 ± 0.10 | 1.25 ± 0.10 | 0.40 ± 0.20 | $0.40 \pm 0.20$ | 0.50 ± 0.10 |
| T ♣ D      | 1206 | 3.10±0.10   | 1.60 ± 0.10 | 0.50 ± 0.20 | 0.50 ± 0.25     | 0.55 ± 0.10 |

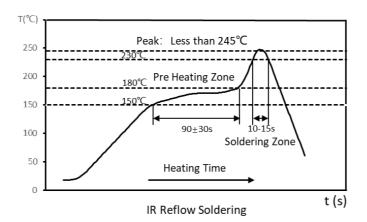
## **◆**Power Derating Curve



30

#### **♦**Rated Value


| Size | Rated<br>Power | RCWV | Overload<br>Voltage | Tolerance | Temperature<br>Coefficient | Resistan | Standard<br>Resistance |       |
|------|----------------|------|---------------------|-----------|----------------------------|----------|------------------------|-------|
| 0120 | At 70°C        | Max. | Max.                | Tolcrance | ppm/°C                     | Min.     | Max.                   | Value |
| 0000 | 1/10/4/        | F0\/ | 1001/               | ± 1%(F)   | ±100                       | 1Ω       | 10ΜΩ                   | E-96  |
| 0603 | 1/10W          | 50V  | 100V                | ±5%(J)    | ±200                       | 0Ω&1Ω    | 10ΜΩ                   | E-24  |
| 0805 | 1/8W           | 150V | 300V                | ± 1%(F)   | ± 100                      | 1Ω       | 10ΜΩ                   | E-96  |
| 0005 | 1/000          | 1500 | 3000                | ±5%(J)    | ±200                       | 0Ω&1Ω    | 10ΜΩ                   | E-24  |
| 1206 | 1/4W           | 200V | 400V                | ± 1%(F)   | ±100                       | 1Ω       | 10ΜΩ                   | E-96  |
| 1206 | 1/400          | 2000 | 4000                | ±5%(J)    | ±200                       | 0Ω&1Ω    | 10ΜΩ                   | E-24  |


Jumper: 0603 size maximum resistance  $\leq$ 50m $\Omega$  and rated current $\leq$ 1A.

. 0805, 1206 size maximum resistance  $\leq$  50m  $\Omega$  and rated current  $\leq$  2A.

 $1\,\Omega\sim10\,\Omega$ : Temperature Coefficient of Resistance for 0603, 0805,  $1206=-300\sim+500$ ppm/°C.

#### **♦**Soldering Temperature Curve





#### **◆**Resistance Marking

R100

4 digit marking for  $\pm 1\%$ .

For example:  $1R00 = 1\Omega$ ;  $R100 = 100m\Omega$ ;  $R047 = 47m\Omega$ ;

R10

3 digit marking for 0603  $\pm$ 1%.

For example:  $1R0 = 1\Omega$ ;  $R10 = 100m\Omega$ ;  $R50 = 500m\Omega$ ;

E-24 Series

473

3 digit marking for  $\pm 5\%$  E24.

For example:  $473 = 47k\Omega$ ;  $1R5 = 1.5\Omega$ ;  $0 = 0\Omega$ ;

E-96 Series

1542

4 digit marking for E96.

For example:  $1542 = 15k4\Omega$ ;  $22R1 = 22.1\Omega$ ;

02C

3 digit marking for E96-0603.

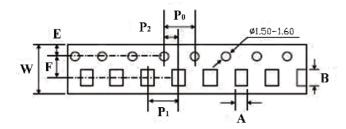
For example:  $02C = 102 \times 100 = 10.2k \Omega$ ;



#### **♦**0603 1% Marking Table

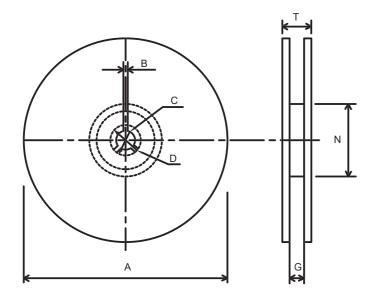
| Code | E48 | E96 | Code | E48 | E96 | Code | E48 | E96 | Code | E48 | E96 |
|------|-----|-----|------|-----|-----|------|-----|-----|------|-----|-----|
| 01   | 100 | 100 | 25   | 178 | 178 | 49   | 316 | 316 | 73   | 562 | 562 |
| 02   |     | 102 | 26   |     | 182 | 50   |     | 324 | 74   |     | 576 |
| 03   | 105 | 105 | 27   | 187 | 187 | 51   | 332 | 332 | 75   | 590 | 590 |
| 04   |     | 107 | 28   |     | 191 | 52   |     | 340 | 76   |     | 604 |
| 05   | 110 | 110 | 29   | 196 | 196 | 53   | 348 | 348 | 77   | 619 | 619 |
| 06   |     | 113 | 30   |     | 200 | 54   |     | 357 | 78   |     | 634 |
| 07   | 115 | 115 | 31   | 205 | 205 | 55   | 365 | 365 | 79   | 649 | 649 |
| 08   |     | 118 | 32   |     | 210 | 56   |     | 374 | 80   |     | 665 |
| 09   | 121 | 121 | 33   | 215 | 215 | 57   | 383 | 383 | 81   | 681 | 681 |
| 10   |     | 124 | 34   |     | 221 | 58   |     | 392 | 82   |     | 698 |
| 11   | 127 | 127 | 35   | 226 | 226 | 59   | 402 | 402 | 83   | 715 | 715 |
| 12   |     | 130 | 36   |     | 232 | 60   |     | 412 | 84   |     | 732 |
| 13   | 133 | 133 | 37   | 237 | 237 | 61   | 422 | 422 | 85   | 750 | 750 |
| 14   |     | 137 | 38   |     | 243 | 62   |     | 432 | 86   |     | 768 |
| 15   | 140 | 140 | 39   | 249 | 249 | 63   | 442 | 442 | 87   | 787 | 787 |
| 16   |     | 143 | 40   |     | 255 | 64   |     | 453 | 88   |     | 806 |
| 17   | 147 | 147 | 41   | 261 | 261 | 65   | 464 | 464 | 89   | 825 | 825 |
| 18   |     | 150 | 42   |     | 267 | 66   |     | 475 | 90   |     | 845 |
| 19   | 154 | 154 | 43   | 274 | 274 | 67   | 487 | 487 | 91   | 866 | 866 |
| 20   |     | 158 | 44   |     | 280 | 68   |     | 499 | 92   |     | 887 |
| 21   | 162 | 162 | 45   | 287 | 287 | 69   | 511 | 511 | 93   | 909 | 909 |
| 22   |     | 165 | 46   |     | 294 | 70   |     | 523 | 94   |     | 931 |
| 23   | 169 | 169 | 47   | 301 | 301 | 71   | 536 | 536 | 95   | 953 | 953 |
| 24   |     | 174 | 48   |     | 309 | 72   |     | 549 | 96   |     | 976 |

| Code        | А | В | C | D | Е | F | G | Н | X | Υ | Z |
|-------------|---|---|---|---|---|---|---|---|---|---|---|
| Mulitiplier |   |   |   |   |   |   |   |   |   |   |   |


#### **♦**Standard Resistance Value

| E3  |     | 1   | 0   |     | 22  |     |     |     |     | 47  |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| E6  | 1   | 0   | 1   | 5   | 2   | .2  | 3   | 33  | 4   | 17  |     |     |     | 68  |     |     |     |
| E12 | 10  | 12  | 15  | 18  | 22  | 27  | 33  | 39  | 47  | 56  | 68  | 82  |     |     |     |     |     |
| E24 | 10  | 11  | 12  | 13  | 15  | 16  | 18  | 20  | 22  | 24  | 27  | 30  | 33  | 36  | 39  | 43  | 47  |
| E24 | 51  | 56  | 62  | 68  | 75  | 82  | 91  |     |     |     |     |     |     |     |     |     |     |
|     | 100 | 102 | 105 | 107 | 110 | 113 | 115 | 118 | 121 | 124 | 127 | 130 | 133 | 137 | 140 | 143 | 147 |
|     | 150 | 154 | 158 | 162 | 165 | 169 | 174 | 178 | 182 | 187 | 191 | 196 | 200 | 205 | 210 | 215 | 221 |
| E96 | 226 | 232 | 237 | 243 | 249 | 255 | 261 | 267 | 274 | 280 | 287 | 294 | 301 | 309 | 316 | 324 | 332 |
|     | 340 | 348 | 357 | 365 | 374 | 383 | 392 | 402 | 412 | 422 | 432 | 442 | 453 | 454 | 475 | 487 | 499 |
|     | 511 | 523 | 536 | 549 | 562 | 576 | 590 | 604 | 619 | 634 | 649 | 665 | 681 | 698 | 715 | 732 | 750 |
|     | 768 | 787 | 806 | 825 | 845 | 866 | 887 | 909 | 931 | 953 | 975 |     |     |     |     |     |     |

31


33

## **♦**Tape and Reel Package



unit:mi**ll**imeter

|      | A<br>(mm)       | B<br>(mm)       | W<br>(mm)       | F<br>(mm)       | E<br>(mm)       | P0<br>(mm)      | P1<br>(mm)      | P2<br>(mm)  |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------|
| 0603 | 1.10 ± 0.20     | $1.90 \pm 0.20$ | $8.00 \pm 0.30$ | $3.50 \pm 0.05$ | $1.75 \pm 0.10$ | $4.00 \pm 0.10$ | $4.00 \pm 0.10$ | 2.00 ± 0.05 |
| 0805 | 1.65 ± 0.20     | $2.40 \pm 0.20$ | $8.00 \pm 0.30$ | 3.50 ± 0.05     | 1.75 ± 0.10     | $4.00 \pm 0.10$ | 4.00 ± 0.10     | 2.00 ± 0.05 |
| 1206 | $2.00 \pm 0.20$ | 3.60 ± 0.20     | 8.00 ± 0.30     | 3.50 ± 0.05     | 1.75 ± 0.10     | 4.00 ± 0.10     | 4.00 ± 0.10     | 2.00 ± 0.05 |



unit:mi**ll**imeter

|      | A<br>(mm)   | N<br>(mm)   | C<br>(mm)  | D<br>(mm) | B<br>(mm) | G<br>(mm)  | T<br>(mm) | Qty/reel |
|------|-------------|-------------|------------|-----------|-----------|------------|-----------|----------|
| 0603 | 178.0 ± 2.0 | 60.0±0.5    | 13.0 ± 0.5 | 20min     | 2.0 ± 0.5 | 10.0 ± 1.5 | 14.9max   | 5000     |
| 0805 | 254.0 ± 2.0 | 100.0 ± 1.0 | 13.5 ± 0.5 | 20min     | 2.0 ± 0.5 | 10.0 ± 1.5 | 14.9max   | 10000    |
| 1206 | 330.0 ± 2.0 | 100.0 ± 1.0 | 13.5 ± 0.5 | 20min     | 2.0 ± 0.5 | 10.0 ± 1.5 | 14.9max   | 20000    |



## **♦**Specification and Test Methods

| Item                                             | Specifications                                                                                                             | Test Methods                                                                                                                                                                                                                                                    |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DC Resistance                                    | F: ±1%; J: ±5%;                                                                                                            | IEC 60115-1/JIS C 5201-1, Clause 4.5.<br>Measure the resistance value.                                                                                                                                                                                          |
| Short time<br>Overload                           | J: $\Delta R \le \pm (2\% + 0.1\Omega)$<br>F: $\Delta R \le \pm (1\% + 0.05\Omega)$                                        | IEC 60115-1/JIS C 5201-1, Clause 4.13.<br>2.5 x Rated voltage or Max. Overload Voltage for<br>5 second. Measure resistance after 30 minutes.                                                                                                                    |
| Solderability                                    | Over 95% of termination must be covered with (Sn+Ag+Cu)                                                                    | IEC 60115-1/JIS C 5201-1, Clause 4.17. After immersing flux, dip in the 245 $\pm$ 2 °C molten solder bath for 3 $\pm$ 0.5sec.                                                                                                                                   |
| Resistance to Solder Heat                        | J: $\Delta$ R $\leq$ $\pm$ (1%+0.1 $\Omega$ )<br>F: $\Delta$ R $\leq$ $\pm$ (0.5%+0.05 $\Omega$ )<br>No mechanical damage. | IEC 60115-1/JIS C 5201-1, Clause 4.18. With $260\pm5^{\circ}\mathrm{C}$ for $10\pm1$ sec.                                                                                                                                                                       |
| Temperature<br>Coefficient of<br>Resistance(TCR) | Refer to the rating table information.                                                                                     | IEC 60115-1/JIS C 5201-1, Clause 4.8.<br>Test temperature point is -55℃ and +155℃.                                                                                                                                                                              |
| Load Life<br>Humidity                            | J: $\Delta R \le \pm (3\% + 0.1\Omega)$<br>F: $\Delta R \le \pm (1\% + 0.05\Omega)$                                        | IEC 60115-1/JIS C 5201-1, Clause 4.24.  Maintain the temperature of the resistor at 40±2℃ and 90%~95%  R.H. with the rated voltage applied.  Cycle ON for 1.5 hours and OFF for o.5hour for 1000(-0~+48) hours.  After 1-4 hours, measure the resistance value. |
| Load Life                                        | J: $\Delta R \le \pm (3\% + 0.1\Omega)$<br>F: $\Delta R \le \pm (1\% + 0.05\Omega)$                                        | IEC 60115-1/JIS C 5201-1, Clause 4.25. Permanent resistance change after 1000(-0~+48) hours (1.5 hours ON, 0.5 hour OFF) at RCWV or Max. Keep the resistor at $70\pm2^{\circ}\text{C}$ .                                                                        |
| Temperature<br>Cycle                             | J: $\Delta$ R $\leq$ $\pm$ (1%+0.1 $\Omega$ )<br>F: $\Delta$ R $\leq$ $\pm$ (0.5%+0.05 $\Omega$ )<br>No mechanical damage. | IEC 60115-1/JIS C 5201-1, Clause 4.19.<br>Repeat 5 cycles as follows<br>-55℃(30 Min.), 25℃(2-3Min.), +155℃(30Min.).                                                                                                                                             |
| Insulation<br>Resistance                         | Between termination and coating must be over 1000M $\Omega$ .                                                              | IEC 60115-1/JIS C 5201-1, Clause 4.6.<br>Test voltage: 100 ± 15V.                                                                                                                                                                                               |
| Bending Strength                                 | J: $\Delta$ R $\leq$ $\pm$ (1%+0.1 $\Omega$ )<br>F: $\Delta$ R $\leq$ $\pm$ (0.5%+0.05 $\Omega$ )<br>No mechanical damage. | IEC 60115-1/JIS C 5201-1, Clause 4.33.<br>Resistance change after bended on the 90mm PCB.<br>Bend: 3mm for 0603, 0805. 2mm for 1206.                                                                                                                            |



## Single Layer Chip Ceramic Capacitor(SLC)

| General SLC                                                                                            | Margin SLC                                                                                             | Surface Mounting SLC                            | Array SLC                                                                                                         | Multi-PAD SLC                                                                                                                              |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| SG                                                                                                     | SM                                                                                                     | SS                                              | SA                                                                                                                | SP                                                                                                                                         |
|                                                                                                        |                                                                                                        |                                                 |                                                                                                                   |                                                                                                                                            |
| Applications: RF, microwave and millimeter wave. Frequency: 100MHz ~100GHz, Capacitance: 0.1 ~ 10000pF | Applications: RF, microwave and millimeter wave. Frequency: 100MHz ~100GHz, Capacitance: 0.1 ~ 10000pF | high precision single<br>layer series capacitor | an array consisting of<br>multiple single-layer<br>capacitors, suitable for<br>multiple coupling<br>and bypassing | multiple capacitance<br>value, binary tunable<br>single layer capacitor,<br>suited for tuning design<br>or microwave integrated<br>circuit |

Meet Standard: MIL-PRF-49464C

### **♦Inspection Item**

| Group | Item                                   | Test Method                   | Test Condition                         |
|-------|----------------------------------------|-------------------------------|----------------------------------------|
| A1    | Burn                                   | -                             | -                                      |
| A1    | Capacitance                            | -                             | 100%                                   |
| A1    | Dissipation factor(D.F.)               | -                             | 100%                                   |
| A1    | IR                                     | -                             | 100%                                   |
| A1    | DWV                                    | -                             | 100%                                   |
| A3    | Visual                                 | Method 2032 of MIL-STD-883    | -                                      |
| B1    | Bond strength                          | Method 2011 of MIL-STD-883    | D, 5 grams minimum with .001" dia wire |
| B1    | Die shear strength                     | Method 2019 of MIL-STD-883    | Limit per MIL-STD-883, Figure 2019-4   |
| B2    | Temperature coefficient                | -                             | -                                      |
| C1    | Immersion                              | Method 107,104 of MIL-STD-202 | Immersion: B                           |
| C2    | Resistance to solder heat              | Method 210 of MIL-STD-202     | 310° <b>C</b> for 5 seconds            |
| C3    | Humidity, steady state,<br>low voltage | Method 103 of MIL-STD-202     | Condition A                            |
| C4    | Life                                   | Method 108 of MIL-STD-202     | Applied 200% rated voltage, 2000 hours |



## **◆Product Applications**

DC blocking, RF bypass, filtering, decoupling, microwave integrated circuit

#### **♦**Product Features

Reliable performance
Small size, down to 10mil\*10mil
Microwave and millimeter wave, frequency up to 100GHz
Suited for conductive adhesive, AuSn eutectic soldering, gold wire bonding

#### **♦**Part Number

| SG  | 1010   | K301                      | Τ             | 1R0         | В         | 1                | G         |
|-----|--------|---------------------------|---------------|-------------|-----------|------------------|-----------|
| T   | $\top$ | $\overline{}$             | T             | T           | T         | T                | T         |
| 1   | 2      | 3                         | 4             | (5)         | 6         | (Ī)              | 8         |
| SLC | Size   | Dielectric<br>Coefficient | Metallization | Capacitance | Tolerance | Rated<br>Voltage | Packaging |

## **①SLC Series Capacitors**

| General SLC                                                                                            | Margin SLC                                                                                             | Surface Mounting SLC                         |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------|
| SG                                                                                                     | SM                                                                                                     | SS                                           |
|                                                                                                        |                                                                                                        |                                              |
| Applications: RF, microwave and millimeter wave. Frequency: 100MHz ~100GHz, Capacitance: 0.1 ~ 10000pF | Applications: RF, microwave and millimeter wave. Frequency: 100MHz ~100GHz, Capacitance: 0.1 ~ 10000pF | High precision single layer series capacitor |

#### ②Size

The first two digits represent length, the second two digits represent width, Unit: mil; for example: 1010, length is 10mil (0.254mm), width is10mil (0.254mm).

## 3 Dielectric Coefficient

dielectric coefficient<10, K9R6=9.6; dielectric coefficient ≥10, K301=300.

| Dielectric<br>type | Dielectric<br>constant | Temperature<br>Coefficient Code | Temperature<br>Coefficient | Temperature<br>Range         | Max.D.F        | IR(Ω)<br>Min@25 <b>°C</b> |
|--------------------|------------------------|---------------------------------|----------------------------|------------------------------|----------------|---------------------------|
|                    | 15                     | COG                             | 0±30ppm                    | -55 ~ +125° <b>C</b>         | 0.15%@1MHz     | 1012                      |
|                    | 35                     | COG                             | 0±30ppm                    | -55 ~ +125° <b>C</b>         | 0.15%@1MHz     | 1012                      |
| Tuna I             | 85                     | COG                             | 0±30ppm                    | -55 ~ +125°C                 | 0.15%@1MHz     | 1012                      |
| Type I             | 220                    | S3L                             | -3300±500ppm               | -55 ~ +125° <b>C</b>         | 0.25%@1MHz     | 1012                      |
|                    | 300                    | R3L                             | -2200±500ppm               | -55 ~ +125° <b>C</b>         | 0.7%@1MHz      | 1011                      |
|                    | 600                    | S3L                             | -3300±500ppm               | -55 ~ +125° <b>C</b>         | 1.2%@1MHz      | 1011                      |
|                    | 900                    | T3M                             | -4700±500ppm               | -55 <b>~</b> +125 <b>°</b> C | 1.2%@1MHz      | 1011                      |
|                    | 1300                   | X7S                             | ±22%                       | -55 ~ +125°C                 | 4%@1kHz/1MHz   | 1011                      |
|                    | 1500                   | X7S                             | ±22%                       | -55 ~ +125° <b>C</b>         | 4%@1kHz/1MHz   | 1011                      |
| Type II            | 2500                   | X7R                             | ±15%                       | -55 ~ +125° <b>C</b>         | 4%@1kHz/1MHz   | 1011                      |
|                    | 4000                   | X7R                             | ±15%                       | -55 <b>~</b> +125 <b>°</b> C | 4%@1kHz/1MHz   | 1011                      |
|                    | 9000                   | Y5V                             | -82% <b>~</b> +22%         | -30 ~ +85° <b>C</b>          | 4%@1kHz/1MHz   | 1011                      |
|                    | 15000                  | X7R/X7S                         | ±15%/±22%                  | -55 ~ +125°C                 | 2.5%@1kHz/1MHz | 1010                      |
| Type III           | 25000                  | X7R/X7S                         | ±15%/±22%                  | -55 ~ +125° <b>C</b>         | 2.5%@1kHz/1MHz | 1010                      |
| ı ybe III          | 35000                  | X7R/X7S                         | ±15%/±22%                  | -55 ~ +125°C                 | 2.5%@1kHz/1MHz | 1010                      |
|                    | 45000                  | X7R/X7S                         | ±15%/±22%                  | -55 ~ +125°C                 | 2.5%@1kHz/1MHz | 10 <sup>9</sup>           |

## 4 Metallization

|      |                                        | Sputter Layer                                 | Pla   | ting Layer |
|------|----------------------------------------|-----------------------------------------------|-------|------------|
| Code | Metal                                  | Thickness                                     | Metal | Thickness  |
| M    | TiW/Au                                 | 0.01 ~ 0.05/0.03 ~ 0.05                       | Au    | ≥2         |
| Р    | TiW/Ni/Au                              | 0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05             | Au    | ≥2         |
| Т    | TaN/TiW/Au                             | 0.03 ~ 0.10/0.1 ~ 0.2/0.03 ~ 0.05             | Au    | ≥2         |
| F    | TaN/TiW/Ni/Au                          | 0.03 ~ 0.10/0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05 | Au    | ≥2         |
| Н    | TaN/TiW/Pt/Au                          | 0.03 ~ 0.10/0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05 | Au    | ≥2         |
| D    | TiW/Pt/Au                              | 0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05             | Au    | ≥2         |
| Е    | Ti/Pt/Au                               | 0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05             | Au    | ≥2         |
| X    | TiW/Ni/Ag                              | 0.01 ~ 0.05/0.1 ~ 0.2/0.10 ~ 0.20             | -     |            |
| L    | frontside: Ti/Pt/Au<br>backside: Ti/Pt | 0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05             | Au    | ≥2         |

Note: please contact Dalicap for non-standard Au thickness and metallization system.



## ⑤ Capacitance

Less than 10pF, 1R0=1.0pF; No less than 10pF, 101=100pF.

## ⑥ Tolerance

| Code      | А       | В      | С       | D      | F   | G   | J   | K    | М    | 0    | Z              | V            |
|-----------|---------|--------|---------|--------|-----|-----|-----|------|------|------|----------------|--------------|
| Tolerance | ±0.05pF | ±0.1pF | ±0.25pF | ±0.5pF | ±1% | ±2% | ±5% | ±10% | ±20% | ±40% | -20% ~<br>+80% | 0 ~<br>+100% |

## ⊕ Rated Voltage

| Code | Rated Voltage | Code | Rated Voltage |
|------|---------------|------|---------------|
| А    | 10            | 6    | 63            |
| В    | 16            | 1    | 100           |
| 2    | 25            | С    | 120           |
| 5    | 50            |      |               |

## Packaging Type

W: Waffle Packaging; G: Stick Box; R: Film Ring.

#### **♦** SG/SM Series Capacitance Table

| Dimensi | on Code           |      |      | 10<br>x.254) |      |             |      | 12<br>k.305) |                     |         |      | 15<br>x.381) |      | 2020<br>(.508x.508) |      |      |      |
|---------|-------------------|------|------|--------------|------|-------------|------|--------------|---------------------|---------|------|--------------|------|---------------------|------|------|------|
| Rated   | vo <b>l</b> tage  | 16V  | 25V  | 50V          | 100V | 16V         | 25V  | 50V          | 100V                | 16<br>V | 25V  | 50V          | 100V | 16V                 | 25V  | 50V  | 100V |
| Cap.pF  | Tolerance         |      |      |              |      |             |      |              |                     |         |      |              |      |                     |      |      |      |
| 0.1     | А                 | K350 | K350 | K350         | K350 | K350        | K350 | K350         | K350                |         |      |              |      |                     |      |      |      |
| 0.3     | А                 | K850 | K850 | K850         | K850 | K850        | K850 | K850         | K850                | K350    | K350 | K350         | K350 |                     |      |      |      |
| 0.8     | В                 | K301 | K301 | K301         | K301 | K850        | K850 | K850         | K850                | K850    | K850 | K850         | K850 | K850                | K850 | K850 | K850 |
| 1.0     | В                 | K301 | K301 | K301         | K301 | K301        | K301 | K301         | K301                | K850    | K850 | K850         | K850 | K850                | K850 | K850 | K850 |
| 2.2     |                   | K601 | K601 | K601         | K601 | K301        | K301 | K301         | K301                | K301    | K301 | K301         | K301 | K301                | K301 | K301 | K301 |
| 3.3     |                   | K132 | K132 | K132         | K132 | K601        | K601 | K601         | K601                | K601    | K601 | K601         | K601 | K301                | K301 | K301 | K301 |
| 4.7     | С                 | K132 | K132 | K132         | K132 | K132        | K132 | K132         | K132                | K601    | K601 | K601         | K601 | K301                | K301 | K301 | K301 |
| 6.8     | D                 | K252 | K252 | K252         | K252 | K132        | K132 | K132         | K132                | K132    | K132 | K132         | K132 | K601                | K601 | K601 | K601 |
| 8.2     |                   | K252 | K252 | K252         | K252 | K132        | K132 | K132         | K132                | K132    | K132 | K132         | K132 | K601                | K601 | K601 | K601 |
| 10      |                   | K252 | K252 | K252         | K252 | K252        | K252 | K252         | K252                | K132    | K132 | K132         | K132 | K601                | K601 | K601 | K601 |
| 15      |                   | K402 | K402 | K402         | K402 | K252        | K252 | K252         | K252                | K252    | K252 | K252         | K252 | K132                | K132 | K132 | K132 |
| 18      |                   | K402 | K402 | K402         | K402 | K402        | K402 | K402         | K402                | K252    | K252 | K252         | K252 | K132                | K132 | K132 | K132 |
| 20      |                   | K402 | K402 | K402         | K402 | K402        | K402 | K402         | K402                | K252    | K252 | K252         | K252 | K132                | K132 | K132 | K132 |
| 22      |                   | K402 | K402 | K402         | K402 | K402        | K402 | K402         | K402                | K252    | K252 | K252         | K252 | K132                | K132 | K132 | K132 |
| 33      |                   | K902 | K902 | K902         | K902 | K902        | K902 | K902         | K902                | K402    | K402 | K402         | K402 | K252                | K252 | K252 | K252 |
| 39      |                   | K153 | K153 | K153         | K153 | K902        | K902 | K902         | K902                | K402    | K402 | K402         | K402 | K252                | K252 | K252 | K252 |
| 47      |                   | K153 | K153 | K153         | K153 | K902        | K902 | K902         | K902                | K402    | K402 | K402         | K402 | K402                | K402 | K402 | K402 |
| 50      |                   | K153 | K153 | K153         | K153 | K902        | K902 | K902         | K902                | K402    | K402 | K402         | K402 | K402                | K402 | K402 | K402 |
| 68      |                   | K153 | K153 | K153         | K153 | K153        | K153 | K153         | K153                | K902    | K902 | K902         | K902 | K402                | K402 | K402 | K402 |
| 82      |                   | K253 | K253 | K253         | K253 | K153        | K153 | K153         | K153                | K902    | K902 | K902         | K902 | K402                | K402 | K402 | K402 |
| 100     |                   | K253 | K253 | K253         |      | K153        | K153 | K153         | K153                | K153    | K153 | K153         | K153 | K902                | K902 | K902 | K902 |
| 120     |                   | K353 | K353 | K353         |      | K153        | K153 | K153         |                     | K153    | K153 | K153         | K153 | K902                | K902 | K902 | K902 |
| 150     | J                 | K353 | K353 |              |      | K253        | K253 | K253         |                     | K153    | K153 | K153         | K153 | K153                | K153 | K153 | K153 |
| 180     | K                 | K453 |      |              |      | K353        | K353 | K353         |                     | K253    | K253 | K253         |      | K153                | K153 | K153 | K153 |
| 200     | М                 | K453 |      |              |      | K353        | K353 |              |                     | K253    | K253 | K253         |      | K153                | K153 | K153 | K153 |
| 220     |                   |      |      |              |      | K453        |      |              |                     | K253    | K253 | K253         |      | K153                | K153 | K153 |      |
| 270     |                   |      |      |              |      | K453        |      |              |                     | K353    | K353 | K353         |      | K153                | K153 | K153 |      |
| 330     |                   |      |      |              |      |             |      |              |                     | K353    | K353 |              |      | K253                | K253 | K253 |      |
| 390     |                   |      |      |              |      |             |      |              |                     | K453    |      |              |      | K253                | K253 | K253 |      |
| 470     |                   |      |      |              |      |             |      |              |                     |         |      |              |      | K353                | K353 |      |      |
| 560     |                   |      |      |              |      |             |      |              |                     |         |      |              |      | K353                | K353 |      |      |
| 680     |                   |      |      |              |      |             |      |              |                     |         |      |              |      | K453                |      |      |      |
| 820     |                   |      |      |              |      |             |      |              |                     |         |      |              |      |                     |      |      |      |
| 1000    |                   |      |      |              |      |             |      |              |                     |         |      |              |      |                     |      |      |      |
| 1200    |                   |      |      |              |      |             |      |              |                     |         |      |              |      |                     |      |      |      |
| 2200    |                   |      |      |              |      |             |      |              |                     |         |      |              |      |                     |      |      |      |
| 10000   | Type I Dielectric |      |      |              | Тур  | e II Dieled | tric |              | Type III Dielectric |         |      |              |      |                     |      |      |      |

**Note:** 1) Different colours correspond to different Dielectrics, It is possible to change Dielectric constant. 2) Special Capacitance and rated voltage, Please contact Dalicap.

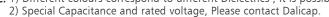


39



#### **♦**SG/SM Series Capacitance Table

| Dime<br>Co |           |      | 25<br>(.635) |      |           |       | 30<br>(.762) |      |            | 3535<br>(.889x.889) |      |      |             | 4040<br>(1.016x1.016) |      |      |      | 5050<br>(1.270x1.270) |      |      |      |
|------------|-----------|------|--------------|------|-----------|-------|--------------|------|------------|---------------------|------|------|-------------|-----------------------|------|------|------|-----------------------|------|------|------|
| Rated v    | oltage/   | 16V  | 25V          | 50V  | 100V      | 16V   | 25V          | 50V  | 100V       | 16V                 | 25V  | 50V  | 100V        | 16V                   | 25V  | 50V  | 100V | 16V                   | 25V  | 50V  | 100V |
| Cap.pF     | Tolerance |      |              |      |           |       |              |      |            |                     |      |      |             |                       |      |      |      |                       |      |      |      |
| 0.1        | Α         |      |              |      |           |       |              |      |            |                     |      |      |             |                       |      |      |      |                       |      |      |      |
| 0.3        | Α         |      |              |      |           |       |              |      |            |                     |      |      |             |                       |      |      |      |                       |      |      |      |
| 0.8        | В         | K350 | K350         | K350 | K350      | K350  | K350         | K350 | K350       |                     |      |      |             |                       |      |      |      |                       |      |      |      |
| 1.0        | В         | K850 | K850         | K850 | K850      | K350  | K350         | K350 | K350       | K350                | K350 | K350 | K350        |                       |      |      |      |                       |      |      |      |
| 2.2        |           | K850 | K850         | K850 | K850      | K850  | K850         | K850 | K850       | K350                | K350 | K350 | K350        | K350                  | K350 | K350 | K350 |                       |      |      |      |
| 3.3        |           | K850 | K850         | K850 | K850      | K850  | K850         | K850 | K850       | K850                | K850 | K850 | K850        | K850                  | K850 | K850 | K850 | K350                  | K350 | K350 | K350 |
| 4.7        | С         | K301 | K301         | K301 | K301      | K850  | K850         | K850 | K850       | K850                | K850 | K850 | K850        | K850                  | K850 | K850 | K850 | K350                  | K350 | K350 | K350 |
| 6.8        | Ď         | K301 | K301         | K301 | K301      | K301  | K301         | K301 | K301       | K301                | K301 | K301 | K301        | K850                  | K850 | K850 | K850 | K850                  | K850 | K850 | K850 |
| 8.2        |           | K301 | K301         | K301 | K301      | K301  | K301         | K301 | K301       | K301                | K301 | K301 | K301        | K850                  | K850 | K850 | K850 | K850                  | K850 | K850 | K850 |
| 10         |           | K301 | K301         | K301 | K301      | K301  | K301         | K301 | K301       | K301                | K301 | K301 | K301        | K301                  | K301 | K301 | K301 | K850                  | K850 | K850 | K850 |
| 15         |           | K601 | K601         | K601 | K601      | K601  | K601         | K601 | K601       | K301                | K301 | K301 | K301        | K301                  | K301 | K301 | K301 | K301                  | K301 | K301 | K301 |
| 18         |           | K601 | K601         | K601 | K601      | K601  | K601         | K601 | K601       | K301                | K301 | K301 | K301        | K301                  | K301 | K301 | K301 | K301                  | K301 | K301 | K301 |
| 20         |           | K132 | K132         | K132 | K132      | K601  | K601         | K601 | K601       | K601                | K601 | K601 | K601        | K301                  | K301 | K301 | K301 | K301                  | K301 | K301 | K301 |
| 22         |           | K132 | K132         | K132 | K132      | K601  | K601         | K601 | K601       | K601                | K601 | K601 | K601        | K301                  | K301 | K301 | K301 | K301                  | K301 | K301 | K301 |
| 33         |           | K132 | K132         | K132 | K132      | K132  | K132         | K132 | K132       | K601                | K601 | K601 | K601        | K601                  | K601 | K601 | K601 | K301                  | K301 | K301 | K301 |
| 39         |           | K132 | K132         | K132 | K132      | K132  | K132         | K132 | K132       | K132                | K132 | K132 | K132        | K601                  | K601 | K601 | K601 | K301                  | K301 | K301 | K301 |
| 47         |           | K252 | K252         | K252 | K252      | K132  | K132         | K132 | K132       | K132                | K132 | K132 | K132        | K601                  | K601 | K601 | K601 | K601                  | K601 | K601 | K601 |
| 50         |           | K252 | K252         | K252 | K252      | K132  | K132         | K132 | K132       | K132                | K132 | K132 | K132        | K132                  | K132 | K132 | K132 | K601                  | K601 | K601 | K601 |
| 68         |           | K252 | K252         | K252 | K252      | K252  | K252         | K252 | K252       | K132                | K132 | K132 | K132        | K132                  | K132 | K132 | K132 | K601                  | K601 | K601 | K601 |
| 82         |           | K402 | K402         | K402 | K402      | K252  | K252         | K252 | K252       | K252                | K252 | K252 | K252        | K132                  | K132 | K132 | K132 | K132                  | K132 | K132 | K132 |
| 100        |           | K402 | K402         | K402 | K402      | K402  | K402         | K402 | K402       | K252                | K252 | K252 | K252        | K252                  | K252 | K252 | K252 | K132                  | K132 | K132 | K132 |
| 120        |           | K402 | K402         | K402 | K402      | K402  | K402         | K402 | K402       | K252                | K252 | K252 | K252        | K252                  | K252 | K252 | K252 | K132                  | K132 | K132 | K132 |
| 150        | J         | K902 | K902         | K902 | K902      | K402  | K402         | K402 | K402       | K402                | K402 | K402 | K402        | K252                  | K252 | K252 | K252 | K132                  | K132 | K132 | K132 |
| 180        | К         | K902 | K902         | K902 | K902      | K402  | K402         | K402 | K402       | K402                | K402 | K402 | K402        | K402                  | K402 | K402 | K402 | K252                  | K252 | K252 | K252 |
| 200        | М         | K902 | K902         | K902 | K902      | K402  | K402         | K402 | K402       | K402                | K402 | K402 | K402        | K402                  | K402 | K402 | K402 | K252                  | K252 | K252 | K252 |
| 220        |           | K902 | K902         | K902 | K902      | K902  | K902         | K902 | K902       | K402                | K402 | K402 | K402        | K402                  | K402 | K402 | K402 | K252                  | K252 | K252 | K252 |
| 270        |           | K153 | K153         | K153 | K153      | K902  | K902         | K902 | K902       | K902                | K902 | K902 | K902        | K402                  | K402 | K402 | K402 | K252                  | K252 | K252 | K252 |
| 330        |           | K153 | K153         | K153 | K153      | K902  | K902         | K902 | K902       | K902                | K902 | K902 | K902        | K402                  | K402 | K402 | K402 | K402                  | K402 | K402 | K402 |
| 390        |           | K153 | K153         | K153 | K153      | K153  | K153         | K153 | K153       | K902                | K902 | K902 | K902        | K902                  | K902 | K902 | K902 | K402                  | K402 | K402 | K402 |
| 470        |           | K253 | K253         | K253 |           | K153  | K153         | K153 | K153       | K153                | K153 | K153 | K153        | K902                  | K902 | K902 | K902 | K402                  | K402 | K402 | K402 |
| 560        |           | K253 | K253         | K253 |           | K153  | K153         | K153 | K153       | K153                | K153 | K153 | K153        | K902                  | K902 | K902 | K902 | K902                  | K902 | K902 | K902 |
| 680        |           | K253 | K253         | K253 |           | K253  | K253         | K253 |            | K153                | K153 | K153 |             | K153                  | K153 | K153 | K153 | K902                  | K902 | K902 | K902 |
| 1000       |           | K353 | K353         |      |           | K253  | K253         | K253 |            | K253                | K253 | K253 |             | K153                  | K153 | K153 |      | K153                  | K153 | K153 | K153 |
| 1200       |           | K453 |              |      |           | K353  | K353         |      |            | K253                | K253 | K253 |             | K253                  | K253 | K253 |      | K153                  | K153 | K153 |      |
| 1500       |           |      |              |      |           | K453  |              |      |            | K353                | K353 |      |             | K253                  | K253 | K253 |      | K153                  | K153 | K153 |      |
| 1800       |           |      |              |      |           |       |              |      |            | K353                | K353 |      |             | K353                  | K353 |      |      | K153                  | K153 | K153 |      |
| 2200       |           |      |              |      |           |       |              |      |            | K453                |      |      |             | K353                  |      |      |      | K253                  | K253 |      |      |
| 10000      |           |      |              | Туре | e I Diele | ctric |              | Туре | e II Diele | ctric               |      | Туре | e III Diele | ectric                |      |      |      |                       |      |      |      |


**Note:** 1) Different colours correspond to different Dielectrics, It is possible to change Dielectric constant. 2) Special Capacitance and rated voltage, Please contact Dalicap.



#### **♦**SS Series Capacitance Table

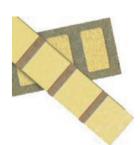
| -      | on Code   |      | 20   | 110<br>x.254) |           |       |      | 20<br>x.508) |            | 6030<br>(1.524x.762) |      |      |             | 8040<br>(2.032x.1.016) |      |      |      |
|--------|-----------|------|------|---------------|-----------|-------|------|--------------|------------|----------------------|------|------|-------------|------------------------|------|------|------|
| Rated  | oltage/   | 16V  | 25V  | 50V           | 100V      | 16V   | 25V  | 50V          | 100V       | 16V                  | 25V  | 50V  | 100V        | 16V                    | 25V  | 50V  | 100V |
| Cap.pF | Tolerance |      |      |               |           |       |      |              |            |                      |      |      |             |                        |      |      |      |
| 0.1    | А         | K850 | K850 | K850          | K850      | K350  | K350 | K350         | K350       |                      |      |      |             |                        |      |      |      |
| 0.3    | Α         | K301 | K301 | K301          | K301      | K350  | K350 | K350         | K350       | K350                 | K350 | K350 | K350        |                        |      |      |      |
| 0.8    | В         | K601 | K601 | K601          | K601      | K850  | K850 | K850         | K850       | K350                 | K350 | K350 | K350        | K350                   | K350 | K350 | K350 |
| 1.0    | В         | K601 | K601 | K601          | K601      | K301  | K301 | K301         | K301       | K850                 | K850 | K850 | K850        | K350                   | K350 | K350 | K350 |
| 2.2    |           | K132 | K132 | K132          | K132      | K301  | K301 | K301         | K301       | K850                 | K850 | K850 | K850        | K850                   | K850 | K850 | K850 |
| 3.3    |           | K252 | K252 | K252          | K252      | K601  | K601 | K601         | K601       | K301                 | K301 | K301 | K301        | K850                   | K850 | K850 | K850 |
| 4.7    | С         | K402 | K402 | K402          | K402      | K601  | K601 | K601         | K601       | K301                 | K301 | K301 | K301        | K301                   | K301 | K301 | K301 |
| 6.8    | D         | K402 | K402 | K402          | K402      | K132  | K132 | K132         | K132       | K601                 | K601 | K601 | K601        | K301                   | K301 | K301 | K301 |
| 8.2    |           | K402 | K402 | K402          | K402      | K132  | K132 | K132         | K132       | K601                 | K601 | K601 | K601        | K301                   | K301 | K301 | K301 |
| 10     |           | K402 | K402 | K402          | K402      | K132  | K132 | K132         | K132       | K601                 | K601 | K601 | K601        | K301                   | K301 | K301 | K301 |
| 15     |           | K902 | K902 | K902          | K902      | K252  | K252 | K252         | K252       | K132                 | K132 | K132 | K132        | K601                   | K601 | K601 | K601 |
| 18     |           | K902 | K902 | K902          | K902      | K252  | K252 | K252         | K252       | K132                 | K132 | K132 | K132        | K601                   | K601 | K601 | K601 |
| 20     |           | K153 | K153 | K153          | K153      | K252  | K252 | K252         | K252       | K132                 | K132 | K132 | K132        | K601                   | K601 | K601 | K601 |
| 22     |           | K153 | K153 | K153          | K153      | K402  | K402 | K402         | K402       | K132                 | K132 | K132 | K132        | K132                   | K132 | K132 | K132 |
| 33     |           | K253 | K253 | K253          |           | K402  | K402 | K402         | K402       | K252                 | K252 | K252 | K252        | K132                   | K132 | K132 | K132 |
| 39     |           | K253 | K253 | K253          |           | K402  | K402 | K402         | K402       | K252                 | K252 | K252 | K252        | K132                   | K132 | K132 | K132 |
| 47     |           | K353 | K353 |               |           | K902  | K902 | K902         | K902       | K402                 | K402 | K402 | K402        | K252                   | K252 | K252 | K252 |
| 50     |           | K353 | K353 |               |           | K902  | K902 | K902         | K902       | K402                 | K402 | K402 | K402        | K252                   | K252 | K252 | K252 |
| 68     |           | K453 |      |               |           | K902  | K902 | K902         | K902       | K402                 | K402 | K402 | K402        | K252                   | K252 | K252 | K252 |
| 82     |           |      |      |               |           | K153  | K153 | K153         | K153       | K402                 | K402 | K402 | K402        | K402                   | K402 | K402 | K402 |
| 100    |           |      |      |               |           | K153  | K153 | K153         | K153       | K402                 | K402 | K402 | K402        | K252                   | K252 | K252 | K252 |
| 120    | J         |      |      |               |           | K153  | K153 | K153         | K153       | K902                 | K902 | K902 | K902        | K402                   | K402 | K402 | K402 |
| 150    | K         |      |      |               |           | K253  | K253 | K253         | K253       | K902                 | K902 | K902 | K902        | K402                   | K402 | K402 | K402 |
| 180    | М         |      |      |               |           | K253  | K253 | K253         | K253       | K153                 | K153 | K153 | K153        | K902                   | K902 | K902 | K902 |
| 200    | 141       |      |      |               |           | K353  | K353 | K353         |            | K153                 | K153 | K153 | K153        | K902                   | K902 | K902 | K902 |
| 220    |           |      |      |               |           | K353  | K353 | K353         |            | K153                 | K153 | K153 | K153        | K902                   | K902 | K902 | K902 |
| 270    |           |      |      |               |           | K453  | K453 |              |            | K153                 | K153 | K153 | K153        | K153                   | K153 | K153 | K153 |
| 330    |           |      |      |               |           | K453  |      |              |            | K253                 | K253 | K253 | K253        | K153                   | K153 | K153 | K153 |
| 390    |           |      |      |               |           |       |      |              |            | K253                 | K253 | K253 |             | K153                   | K153 | K153 | K153 |
| 470    |           |      |      |               |           |       |      |              |            | K353                 | K353 | K353 |             | K153                   | K153 | K153 | K153 |
| 560    |           |      |      |               |           |       |      |              |            | K353                 | K353 |      |             | K253                   | K253 | K253 | K253 |
| 680    |           |      |      |               |           |       |      |              |            | K453                 |      |      |             | K253                   | K253 | K253 |      |
| 820    |           |      |      |               |           |       |      |              |            |                      |      |      |             | K353                   | K353 | K353 |      |
| 1000   |           |      |      |               |           |       |      |              |            |                      |      |      |             | K353                   | K353 |      |      |
| 1200   |           |      |      |               |           |       |      |              |            |                      |      |      |             | K453                   |      |      |      |
|        |           |      |      |               |           |       |      |              |            |                      |      |      |             |                        |      |      |      |
| 10000  |           |      |      | Тур           | e I Diele | ctric |      | Тур          | e II Diele | ctric                |      | Туре | e III Diele | ctric                  |      |      |      |

Note: 1) Different colours correspond to different Dielectrics , It is possible to change Dielectric constant.



41




## **SA Series Array SLC**

## **♦**Product Application

DC blocking, RF bypass, filtering, decoupling, microwave integrated circuit

#### **♦**Product Feature

Integrated design for saving space and simplied assembling The total size is theoretically minimum 20mils×10 mils



## **♦**Part Number

| SA           | 1010   | K301                      | T             | 1R0         | В         | 1                | G         | 6                     |
|--------------|--------|---------------------------|---------------|-------------|-----------|------------------|-----------|-----------------------|
| $\top$       | $\top$ | $\top$                    | T             | T           | Т         | T                | T         | $\top$                |
| 1            | 2      | 3                         | 4             | (5)         | 6         | 7                | 8         | 9                     |
| Array<br>SLC | Size   | Dielectric<br>Coefficient | Metallization | Capacitance | Tolerance | Rated<br>Voltage | Packaging | Capacitor<br>Quantity |

## **①SLC Series Capacitors**

SA Series Array SLC

## ②Size

The first two digits represent length, the second two digits represent width, Unit: mil; for example: 1010, length is 10mil (0.254mm), width is10mil (0.254mm)



## 3 Dielectric Coefficient

dielectric coefficient<10, K9R6=9.6; dielectric coefficient ≥10, K301=300.

| Dielectric<br>type | Dielectric<br>constant | Temperature<br>Coefficient Code | Temperature<br>Coefficient | Temperature<br>Range | Max.D.F        | IR(Ω) Min@25°C  |
|--------------------|------------------------|---------------------------------|----------------------------|----------------------|----------------|-----------------|
|                    | 15                     | COG                             | 0±30ppm                    | -55 ~ +125°C         | 0.15%@1MHz     | 1012            |
|                    | 35                     | COG                             | 0±30ppm                    | -55 ~ +125° <b>C</b> | 0.15%@1MHz     | 1012            |
|                    | 85                     | COG                             | 0±30ppm                    | -55 ~ +125°C         | 0.15%@1MHz     | 1012            |
| Type I             | 220                    | S3L                             | -3300±500ppm               | -55 ~ +125°C         | 0.25%@1MHz     | 1012            |
|                    | 300                    | R3L                             | -2200±500ppm               | -55 ~ +125°C         | 0.7%@1MHz      | 1011            |
|                    | 600                    | S3L                             | -3300±500ppm               | -55 ~ +125°C         | 1.2%@1MHz      | 1011            |
|                    | 900                    | T3M                             | -4700±500ppm               | -55 ~ +125° <b>C</b> | 1.2%@1MHz      | 1011            |
|                    | 1300                   | X7S                             | ±22%                       | -55 ~ +125°C         | 4%@1kHz/1MHz   | 1011            |
|                    | 1500                   | X7S                             | ±22%                       | -55 ~ +125°C         | 4%@1kHz/1MHz   | 1011            |
| Type II            | 2500                   | X7R                             | ±15%                       | -55 ~ +125°C         | 4%@1kHz/1MHz   | 1011            |
|                    | 4000                   | X7R                             | ±15%                       | -55 ~ +125°C         | 4%@1kHz/1MHz   | 1011            |
|                    | 9000                   | Y5V                             | -82% <b>~</b> +22%         | -30 ~ +85°C          | 4%@1kHz/1MHz   | 1011            |
|                    | 15000                  | X7R/X7S                         | ±15%/±22%                  | -55 ~ +125°C         | 2.5%@1kHz/1MHz | 1010            |
| Typo III           | 25000                  | X7R/X7S                         | ±15%/±22%                  | -55 ~ +125°C         | 2.5%@1kHz/1MHz | 1010            |
| Type III           | 35000                  | X7R/X7S                         | ±15%/±22%                  | -55 ~ +125°C         | 2.5%@1kHz/1MHz | 1010            |
|                    | 45000                  | X7R/X7S                         | ±15%/±22%                  | -55 ~ +125° <b>C</b> | 2.5%@1kHz/1MHz | 10 <sup>9</sup> |

## Metallization

|      |                                        | Sputter Layer                                 | Pla   | ting Layer |
|------|----------------------------------------|-----------------------------------------------|-------|------------|
| Code | Metal                                  | Thickness                                     | Metal | Thickness  |
| М    | TiW/Au                                 | 0.01 ~ 0.05/0.03 ~ 0.05                       | Au    | ≥2         |
| Р    | TiW/Ni/Au                              | 0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05             | Au    | ≥2         |
| Т    | TaN/TiW/Au                             | 0.03 ~ 0.10/0.1 ~ 0.2/0.03 ~ 0.05             | Au    | ≥2         |
| F    | TaN/TiW/Ni/Au                          | 0.03 ~ 0.10/0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05 | Au    | ≥2         |
| Н    | TaN/TiW/Pt/Au                          | 0.03 ~ 0.10/0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05 | Au    | ≥2         |
| D    | TiW/Pt/Au                              | 0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05             | Au    | ≥2         |
| Е    | Ti/Pt/Au                               | 0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05             | Au    | ≥2         |
| X    | TiW/Ni/Ag                              | 0.01 ~ 0.05/0.1 ~ 0.2/0.10 ~ 0.20             | -     | -          |
| L    | frontside: Ti/Pt/Au<br>backside: Ti/Pt | 0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05             | Au    | ≥2         |

Note: please contact Dalicp for non-standard Au thickness and metallization system.



## ⑤ Capacitance

Less than 10pF, 1R0=1.0pF; No less than 10pF, 101=100pF.

## ⑥ Tolerance

| Code      | А       | В      | С       | D      | F   | G   | J   | K    | М    | 0    | Z              | V            |
|-----------|---------|--------|---------|--------|-----|-----|-----|------|------|------|----------------|--------------|
| Tolerance | ±0.05pF | ±0.1pF | ±0.25pF | ±0.5pF | ±1% | ±2% | ±5% | ±10% | ±20% | ±40% | -20% ∼<br>+80% | 0 ~<br>+100% |

## ⑦ Rated Voltage

| Code | Rated Voltage | Code | Rated Voltage |
|------|---------------|------|---------------|
| А    | 10            | 6    | 63            |
| В    | 16            | 1    | 100           |
| 2    | 25            | C    | 120           |
| 5    | 50            |      |               |

## Packaging Type

W: Waffle Packaging; G: Stick Box; R: Film Ring.

## 

Capacitor quantity

## **♦**SA Series Array SLC

| Dimension Code 1010 (.254x.254) |           |              | 1212<br>(.305x.305) |       |      | 1515<br>(.381x.381) |            |       | 2020<br>(.508x.508) |      |      |      | 2525<br>(.635x.635) |      |      |      |      |      |      |      |      |
|---------------------------------|-----------|--------------|---------------------|-------|------|---------------------|------------|-------|---------------------|------|------|------|---------------------|------|------|------|------|------|------|------|------|
| Rated v                         | oltage/   | 16V          | 25V                 | 50V   | 100V | 16V                 | 25V        | 50V   | 100V                | 16V  | 25V  | 50V  | 100V                | 16V  | 25V  | 50V  | 100V | 16V  | 25V  | 50V  | 100V |
| Cap.pF                          | Tolerance |              |                     |       |      |                     |            |       |                     |      |      |      |                     |      |      |      |      |      |      |      |      |
| 0.1                             | А         | K350         | K350                | K350  | K350 | K350                | K350       | K350  | K350                |      |      |      |                     |      |      |      |      |      |      |      |      |
| 0.3                             | А         | K850         | K850                | K850  | K850 | K850                | K850       | K850  | K850                | K350 | K350 | K350 | K350                |      |      |      |      |      |      |      |      |
| 0.8                             | В         | K850         | K850                | K850  | K850 | K850                | K850       | K850  | K850                | K850 | K850 | K850 | K850                | K850 | K850 | K850 | K850 | K350 | K350 | K350 | K350 |
| 1.0                             | В         | K301         | K301                | K301  | K301 | K850                | K850       | K850  | K850                | K850 | K850 | K850 | K850                | K850 | K850 | K850 | K850 | K850 | K850 | K850 | K850 |
| 2.2                             |           | K301         | K301                | K301  | K301 | K301                | K301       | K301  | K301                | K301 | K301 | K301 | K301                | K301 | K301 | K301 | K301 | K850 | K850 | K850 | K850 |
| 3.3                             |           | K601         | K601                | K601  | K601 | K601                | K601       | K601  | K601                | K301 | K301 | K301 | K301                | K301 | K301 | K301 | K301 | K301 | K301 | K301 | K301 |
| 4.7                             | С         | K601         | K601                | K601  | K601 | K601                | K601       | K601  | K601                | K601 | K601 | K601 | K601                | K301 | K301 | K301 | K301 | K301 | K301 | K301 | K301 |
| 6.8                             | D         | K132         | K132                | K132  | K132 | K132                | K132       | K132  | K132                | K601 | K601 | K601 | K601                | K601 | K601 | K601 | K601 | K601 | K601 | K601 | K601 |
| 8.2                             |           | K132         | K132                | K132  | K132 | K132                | K132       | K132  | K132                | K132 | K132 | K132 | K132                | K601 | K601 | K601 | K601 | K601 | K601 | K601 | K601 |
| 10                              |           | K132         | K132                | K132  | K132 | K132                | K132       | K132  | K132                | K132 | K132 | K132 | K132                | K601 | K601 | K601 | K601 | K601 | K601 | K601 | K601 |
| 15                              |           | K252         | K252                | K252  | K252 | K252                | K252       | K252  | K252                | K132 | K132 | K132 | K132                | K132 | K132 | K132 | K132 | K132 | K132 | K132 | K132 |
| 18                              |           | K252         | K252                | K252  | K252 | K252                | K252       | K252  | K252                | K252 | K252 | K252 | K252                | K132 | K132 | K132 | K132 | K132 | K132 | K132 | K132 |
| 20                              |           | K402         | K402                | K402  | K402 | K252                | K252       | K252  | K252                | K252 | K252 | K252 | K252                | K132 | K132 | K132 | K132 | K132 | K132 | K132 | K132 |
| 22                              |           | K402         | K402                | K402  | K402 | K252                | K252       | K252  | K252                | K252 | K252 | K252 | K252                | K132 | K132 | K132 | K132 | K132 | K132 | K132 | K132 |
| 33                              |           | K402         | K402                | K402  | K402 | K402                | K402       | K402  | K402                | K402 | K402 | K402 | K402                | K252 | K252 | K252 | K252 | K252 | K252 | K252 | K252 |
| 39                              |           | K902         | K902                | K902  | K902 | K402                | K402       | K402  | K402                | K402 | K402 | K402 | K402                | K402 | K402 | K402 | K402 | K252 | K252 | K252 | K252 |
| 47                              |           | K902         | K902                | K902  | K902 | K902                | K902       | K902  | K902                | K402 | K402 | K402 | K402                | K402 | K402 | K402 | K402 | K252 | K252 | K252 | K252 |
| 50                              |           | K902         | K902                | K902  | K902 | K902                | K902       | K902  | K902                | K402 | K402 | K402 | K402                | K402 | K402 | K402 | K402 | K402 | K402 | K402 | K402 |
| 68                              |           | K153         | K153                | K153  | K153 | K902                | K902       | K902  | K902                | K902 | K902 | K902 | K902                | K402 | K402 | K402 | K402 | K402 | K402 | K402 | K402 |
| 82                              |           | K153         | K153                | K153  | K153 | K153                | K153       | K153  | K153                | K902 | K902 | K902 | K902                | K902 | K902 | K902 | K902 | K402 | K402 | K402 | K402 |
| 100                             |           | K153         | K153                | K153  |      | K153                | K153       | K153  | K153                | K153 | K153 | K153 | K153                | K902 | K902 | K902 | K902 | K902 | K902 | K902 | K902 |
| 120                             |           | K153         | K153                | K153  |      | K153                | K153       | K153  | K153                | K153 | K153 | K153 | K153                | K902 | K902 | K902 | K902 | K902 | K902 | K902 | K902 |
| 150                             | J         | K253         | K253                | K253  |      | K253                | K253       | K253  |                     | K153 | K153 | K153 | K153                | K153 | K153 | K153 | K153 | K902 | K902 | K902 | K902 |
| 180                             | K         | K253         | K253                | K253  |      | K253                | K253       | K253  |                     | K153 | K153 | K153 |                     | K153 | K153 | K153 | K153 | K153 | K153 | K153 | K153 |
| 200                             | М         | K353         | K353                |       |      | K253                | K253       | K253  |                     | K253 | K253 | K253 |                     | K153 | K153 | K153 | K153 | K153 | K153 | K153 | K153 |
| 220                             |           | K353         | K353                |       |      | K353                | K353       |       |                     | K253 | K253 | K253 |                     | K153 | K153 | K153 |      | K153 | K153 | K153 | K153 |
| 270                             |           | K453         |                     |       |      | K353                | K353       |       |                     | K253 | K253 | K253 |                     | K253 | K253 | K253 |      | K153 | K153 | K153 |      |
| 330                             |           |              |                     |       |      | K453                |            |       |                     | K353 | K353 |      |                     | K253 | K253 | K253 |      | K253 | K253 | K253 |      |
| 390                             |           |              |                     |       |      |                     |            |       |                     | K453 |      |      |                     | K353 | K353 | K353 |      | K253 | K253 | K253 |      |
| 470                             |           |              |                     |       |      |                     |            |       |                     | K453 |      |      |                     | K353 | K353 |      |      | K253 | K253 | K253 |      |
| 560                             |           |              |                     |       |      |                     |            |       |                     |      |      |      |                     | K453 |      |      |      | K353 | K353 |      |      |
| 680                             |           |              |                     |       |      |                     |            |       |                     |      |      |      |                     |      |      |      |      | K453 |      |      |      |
| 1000                            |           |              |                     |       |      |                     |            |       |                     |      |      |      |                     |      |      |      |      |      |      |      |      |
| 1200                            |           |              |                     |       |      |                     |            |       |                     |      |      |      |                     |      |      |      |      |      |      |      |      |
| 1500                            |           |              |                     |       |      |                     |            |       |                     |      |      |      |                     |      |      |      |      |      |      |      |      |
| 1800                            |           |              |                     |       |      |                     |            |       |                     |      |      |      |                     |      |      |      |      |      |      |      |      |
| 2200                            |           |              |                     |       |      |                     |            |       |                     | L    |      |      |                     |      |      |      |      |      |      |      |      |
| 10000                           |           | Type   Diele |                     | ctric |      | Тур                 | e II Diele | ctric | Type III Dielectric |      |      |      |                     |      |      |      |      |      |      |      |      |

**Note:** 1) Different colours correspond to different Dielectrics, It is possible to change Dielectric constant. 2) Special Capacitance and rated voltage, Please contact Dalicap.



## **♦**SA Series Array SLC

| Dimensi | Dimension Code (.762x.762) |      |      |      | 3535<br>(.889x.889) |       |      |      | 4040<br>(1.016x1.016) |       |      | 5050<br>(1.27×1.27) |             |       |      | 7070<br>(1.78x1.78) |      |      |      |      |      |
|---------|----------------------------|------|------|------|---------------------|-------|------|------|-----------------------|-------|------|---------------------|-------------|-------|------|---------------------|------|------|------|------|------|
| Rated v | vo <b>l</b> tage           | 16V  | 25V  | 50V  | 100V                | 16V   | 25V  | 50V  | 100V                  | 16V   | 25V  | 50V                 | 100V        | 16V   | 25V  | 50V                 | 100V | 16V  | 25V  | 50V  | 100V |
| Cap.pF  | Tolerance                  |      |      |      |                     |       |      |      |                       |       |      |                     |             |       |      |                     |      |      |      |      |      |
| 0.1     | А                          |      |      |      |                     |       |      |      |                       |       |      |                     |             |       |      |                     |      |      |      |      |      |
| 0.3     | А                          |      |      |      |                     |       |      |      |                       |       |      |                     |             |       |      |                     |      |      |      |      |      |
| 0.8     | В                          | K350 | K350 | K350 | K350                | K350  | K350 | K350 | K350                  | K350  | K350 | K350                | K350        | K350  | K350 | K350                | K350 |      |      |      |      |
| 1.0     | В                          | K350 | K350 | K350 | K350                | K350  | K350 | K350 | K350                  | K350  | K350 | K350                | K350        | K350  | K350 | K350                | K350 | K350 | K350 | K350 | K350 |
| 2.2     |                            | K850 | K850 | K850 | K850                | K850  | K850 | K850 | K850                  | K850  | K850 | K850                | K850        | K850  | K850 | K850                | K850 | K350 | K350 | K350 | K350 |
| 3.3     |                            | K301 | K301 | K301 | K301                | K301  | K301 | K301 | K301                  | K301  | K301 | K301                | K301        | K850  | K850 | K850                | K850 | K850 | K850 | K850 | K850 |
| 4.7     | С                          | K301 | K301 | K301 | K301                | K301  | K301 | K301 | K301                  | K301  | K301 | K301                | K301        | K301  | K301 | K301                | K301 | K850 | K850 | K850 | K850 |
| 6.8     | D                          | K301 | K301 | K301 | K301                | K301  | K301 | K301 | K301                  | K301  | K301 | K301                | K301        | K301  | K301 | K301                | K301 | K301 | K301 | K301 | K301 |
| 8.2     |                            | K601 | K601 | K601 | K601                | K301  | K301 | K301 | K301                  | K301  | K301 | K301                | K301        | K301  | K301 | K301                | K301 | K301 | K301 | K301 | K301 |
| 10      |                            | K601 | K601 | K601 | K601                | K601  | K601 | K601 | K601                  | K301  | K301 | K301                | K301        | K301  | K301 | K301                | K301 | K301 | K301 | K301 | K301 |
| 15      |                            | K601 | K601 | K601 | K601                | K601  | K601 | K601 | K601                  | K601  | K601 | K601                | K601        | K601  | K601 | K601                | K601 | K301 | K301 | K301 | K301 |
| 18      |                            | K132 | K132 | K132 | K132                | K132  | K132 | K132 | K132                  | K601  | K601 | K601                | K601        | K601  | K601 | K601                | K601 | K301 | K301 | K301 | K301 |
| 20      |                            | K132 | K132 | K132 | K132                | K132  | K132 | K132 | K132                  | K601  | K601 | K601                | K601        | K601  | K601 | K601                | K601 | K601 | K601 | K601 | K601 |
| 22      |                            | K132 | K132 | K132 | K132                | K132  | K132 | K132 | K132                  | K132  | K132 | K132                | K132        | K601  | K601 | K601                | K601 | K601 | K601 | K601 | K601 |
| 33      |                            | K252 | K252 | K252 | K252                | K132  | K132 | K132 | K132                  | K132  | K132 | K132                | K132        | K132  | K132 | K132                | K132 | K132 | K132 | K132 | K132 |
| 39      |                            | K252 | K252 | K252 | K252                | K252  | K252 | K252 | K252                  | K132  | K132 | K132                | K132        | K132  | K132 | K132                | K132 | K132 | K132 | K132 | K132 |
| 47      |                            | K252 | K252 | K252 | K252                | K252  | K252 | K252 | K252                  | K252  | K252 | K252                | K252        | K132  | K132 | K132                | K132 | K132 | K132 | K132 | K132 |
| 50      |                            | K252 | K252 | K252 | K252                | K252  | K252 | K252 | K252                  | K252  | K252 | K252                | K252        | K132  | K132 | K132                | K132 | K132 | K132 | K132 | K132 |
| 68      |                            | K402 | K402 | K402 | K402                | K402  | K402 | K402 | K402                  | K252  | K252 | K252                | K252        | K252  | K252 | K252                | K252 | K132 | K132 | K132 | K132 |
| 82      |                            | K402 | K402 | K402 | K402                | K402  | K402 | K402 | K402                  | K402  | K402 | K402                | K402        | K252  | K252 | K252                | K252 | K252 | K252 | K252 | K252 |
| 100     |                            | K402 | K402 | K402 | K402                | K402  | K402 | K402 | K402                  | K402  | K402 | K402                | K402        | K402  | K402 | K402                | K402 | K252 | K252 | K252 | K252 |
| 120     |                            | K402 | K402 | K402 | K402                | K402  | K402 | K402 | K402                  | K402  | K402 | K402                | K402        | K402  | K402 | K402                | K402 | K252 | K252 | K252 | K252 |
| 150     | J                          | K902 | K902 | K902 | K902                | K402  | K402 | K402 | K402                  | K402  | K402 | K402                | K402        | K402  | K402 | K402                | K402 | K402 | K402 | K402 | K402 |
| 180     | K                          | K902 | K902 | K902 | K902                | K902  | K902 | K902 | K902                  | K902  | K902 | K902                | K902        | K402  | K402 | K402                | K402 | K402 | K402 | K402 | K402 |
| 200     | М                          | K902 | K902 | K902 | K902                | K902  | K902 | K902 | K902                  | K902  | K902 | K902                | K902        | K402  | K402 | K402                | K402 | K402 | K402 | K402 | K402 |
| 220     |                            | K153 | K153 | K153 | K153                | K902  | K902 | K902 | K902                  | K902  | K902 | K902                | K902        | K902  | K902 | K902                | K902 | K402 | K402 | K402 | K402 |
| 270     |                            | K153 | K153 | K153 |                     | K153  | K153 | K153 | K153                  | K902  | K902 | K902                | K902        | K902  | K902 | K902                | K902 | K402 | K402 | K402 | K402 |
| 330     |                            | K153 | K153 | K153 |                     | K153  | K153 | K153 |                       | K153  | K153 | K153                | K153        | K902  | K902 | K902                | K902 | K902 | K902 | K902 | K902 |
| 390     |                            | K253 | K253 | K253 |                     | K153  | K153 | K153 |                       | K153  | K153 | K153                |             | K153  | K153 | K153                | K153 | K902 | K902 | K902 | K902 |
| 470     |                            | K253 | K253 | K253 |                     | K253  | K253 | K253 |                       | K153  | K153 | K153                |             | K153  | K153 | K153                |      | K153 | K153 | K153 | K153 |
| 560     |                            | K253 | K253 | K253 |                     | K253  | K253 | K253 |                       | K253  | K253 | K253                |             | K153  | K153 | K153                |      | K153 | K153 | K153 |      |
| 680     |                            | K353 | K353 |      |                     | K353  | K353 |      |                       | K253  | K253 | K253                |             | K253  | K253 | K253                |      | K153 | K153 | K153 |      |
| 1000    |                            | K453 |      |      |                     | K453  |      |      |                       | K353  | K353 |                     |             | K353  | K353 | K353                |      | K253 | K253 | K253 |      |
| 1200    |                            |      |      |      |                     |       |      |      |                       | K453  |      |                     |             | K353  | K353 |                     |      | K253 | K253 | K253 |      |
| 1500    |                            |      |      |      |                     |       |      |      |                       |       |      |                     |             | K453  |      |                     |      | K353 | K353 |      |      |
| 1800    |                            |      |      |      |                     |       |      |      |                       |       |      |                     |             |       |      |                     |      | K453 |      |      |      |
| 2200    |                            |      |      |      |                     |       |      |      |                       |       |      |                     |             |       |      |                     |      |      |      |      |      |
| 10000   |                            |      |      | Тур  | e I Diele           | ctric |      | Тур  | e II Diele            | ctric |      | Тур                 | e III Diele | ctric |      |                     |      |      |      |      |      |

**Note:** 1) Different colours correspond to different Dielectrics, It is possible to change Dielectric constant. 2) Special Capacitance and rated voltage, Please contact Dalicap.



#### SP Series Multi-Pad SLC

#### **◆**Product Applications

Matching networks, parallel resonance circuits, dielectric resonator tuning & coupling.

#### **◆**Product Features

Small geometric size is suitable for microwave circuit and is good for circuit design and adjustment SP Array SLC is mainly customized according to customer drawings and requirements;

Maximum overall size:10×10mm;

Minimum overall size:0.3×0.3mm;

Minimum machining gap:50μm,

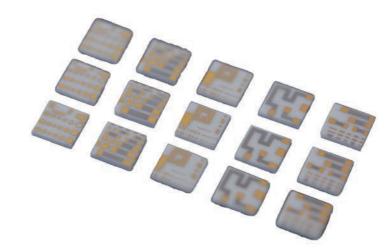
Thickness:  $0.15 \sim 0.25$  mm.

#### **♦**Part Number

| SP                   | 1010 | K301                      | Τ             | 1R0         | В         | 1                | G         | 6                     |
|----------------------|------|---------------------------|---------------|-------------|-----------|------------------|-----------|-----------------------|
| $\top$               | Ţ    | $\top$                    | T             | T           | Ţ         | $\top$           | T         | T                     |
| 1                    | 2    | 3                         | 4             | (5)         | 6         | 7                | 8         | 9                     |
| Multi-<br>PAD<br>SLC | Size | Dielectric<br>Coefficient | Metallization | Capacitance | Tolerance | Rated<br>Voltage | Packaging | Capacitor<br>Quantity |



#### **◆**Product Features


- 1. Sputtering technology, high reliability and ultra-stable performance, good consistency.
- 2.Designed and processed with 99.6% pure Al2O3 substrate, which has excellent insulation performance and low loss at high frequency.
- 3. Designed and processed with high-purity AIN substrate, which has excellent thermal conductivity.

#### **◆Product Applications**

Substrates for microwave/millimeter wave application, microwave/millimeter wave device, and high-speed optical communication device.

#### **♦** Process Introduction

On the ceramic substrate, through magnetron sputtering, photoetching, dry wet etching, electroplating gold and other processes, the thin film components and metal lines are integrated to form high-precision circuit patterns with specific functions.



## **◆** Material Properties

| Material                          | Chemical<br>Composition | Purity | Color | Nominal<br>Density<br>(g/cm3) | Loss<br>(1 MHz) | Dielectric<br>Constant<br>(1 MHz) | Therma <b>l</b><br>Conductivity<br>(W/m°K) | CTE<br>(10 <sup>-6</sup> mm/° <b>C</b> )    |
|-----------------------------------|-------------------------|--------|-------|-------------------------------|-----------------|-----------------------------------|--------------------------------------------|---------------------------------------------|
| Aluminum<br>Oxide                 | $AI_2O_3$               | 96%    | White | 3.7                           | 0.0003          | 9.5±0.2                           | 24.7                                       | 6.5~8.0<br>(25°C~800°C)                     |
| Aluminum<br>Oxide<br>(Polished)   | $Al_2O_3$               | 99.6%  | White | 3.87                          | 0.0001          | 9.9±0.1 26.9                      |                                            | 7.0~8.3<br>( 25° <b>c</b> ~1000° <b>c</b> ) |
| Aluminum<br>Oxide<br>(As-fired)   | $AI_2O_3$               | 99.6%  | White | 3.87                          | 0.0001          | 9.9±0.1                           | 26.9                                       | 7.0~8.3<br>( 25 <b>°C</b> ~1000 <b>°C</b> ) |
| Aluminum<br>Nitride<br>(Polished) | AlN                     | 98%    | Gray  | 3.28                          | 0.001           | 8.8±0.2                           | 170                                        | 4.6<br>(25°C~300°C)                         |
| Aluminum<br>Nitride<br>(As-fired) | AIN                     | 98%    | Gray  | 3.28                          | 0.001           | 8.8±0.2                           | 170                                        | 4.6<br>(25℃~300℃)                           |

47



#### **♦** Design Guidelines

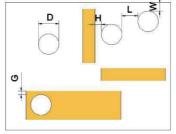
#### Substrate Materials

- 1. Material: alumina oxide, aluminum nitride, silicon, glass, etc.
- 2. Layout:  $2 \sim 6$  inches square or round (Typical: 2 inches square)
- 3. Thickness:  $0.101 \sim 1.524 \text{ mm}$  (Typical: 0.254, 0.381)
- 4.Roughness: polished(<0.08µm), as-fired(<0.2µm), lapped (customer specified)

#### Metal

- 1. Sputtering: Ti、TiW、TaN、Cu、Ni、Pt、Au
- 2. Electroplating: Au
- 3. Au thickness:  $0.5 \sim 5 \mu m$

#### • TaN Sheet Resistance


- 1. Sheet resistance:  $25 \sim 200\Omega/\Box$  (Typical:  $50\Omega/\Box$ )
- 2. Resistance tolerance:  $\pm 10\%$  (Typical:  $\pm 20\%$ )
- 3. Minimum resistor size: 50µm\*50µm
- 4. Resistance TCR: -100 ± 50ppm/°C @ -55°C ~ +125°C
- 5. Maximum service temperature: 350°C (<0.5 hours)

#### Graphic

- 1. Minimum line width: 10µm
- 2. Minimum line gap: 20µm
- 3. Line tolerance:  $\pm 3\mu m$  (for non-critical areas  $\pm 5\mu m$ )

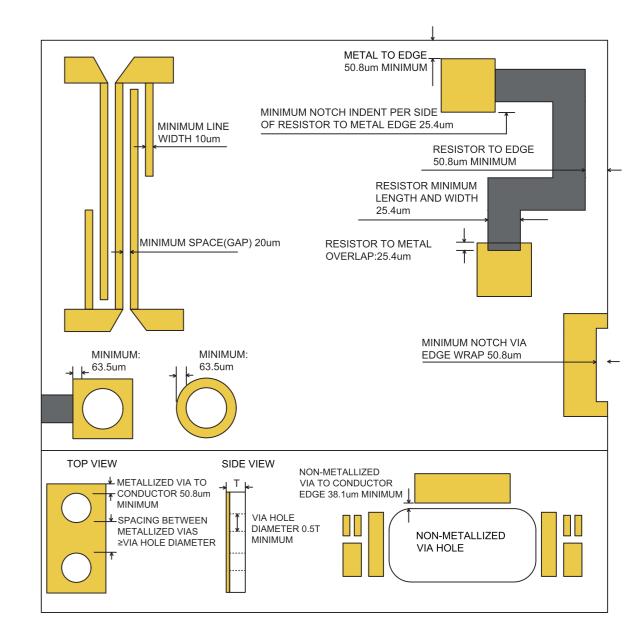
#### Metallized holes/slots

- 1. Hole diameter D: 0.5\*T minimum
- 2. Spacing between via holes L: 1\*T minimum
- 3. Hole to edge W: 1\*T minimum
- 4. Hole to metal line H: 38.1µm minimum
- 5. Via hole to conductor edge G: 50.8µ minimum





Thin Film Circuit


#### Dimensions

- 1. Minimum size: 0.3mm\*0.3mm
- 2. Tolerance:  $\pm 0.05$ mm

#### Drawing

- 1. Format: DXF, DWG
- 2. Length unit: mm

#### Detailed Design Guidelines

